

Vishay Semiconductors

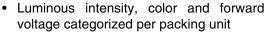
Power SMD LED PLCC-4

DESCRIPTION

The TLM.32.. series is an advanced development in terms of heat dissipation.

The leadframe profile of this PLCC-3 SMD package is optimized to reduce the thermal resistance.

This allows higher drive current and doubles the light output compared to Vishay's high intensity SMD LED in PLCC-2 package.


PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: SMD PLCC-4Product series: power

• Angle of half intensity: ± 60°

FEATURES

- Utilizing AllnGaP technology
- · Available in 8 mm tape

- Luminous intensity ratio per packing unit $I_{Vmax}/I_{Vmin} \le 1.6$
- ESD class 2
- Suitable for all soldering methods according to CECC
- Lead (Pb)-free device

APPLICATIONS

- · Traffic Signals and Signs
- · Interior and exterior lighting
- · Dashboard illumination
- Indicator and backlighting purposes for audio, video, LCD's switches, symbols, illuminated advertising etc.

PARTS TABLE				
PART	COLOR, LUMINOUS INTENSITY			
TLMPG3200-GS08	Pure green, I _V = 50 mcd (typ.)			
TLMPG3200-GS18	Pure green, I _V = 50 mcd (typ.)			
TLMYG3200-GS08	Yellow green, I _V = 130 mcd (typ.)			

ABSOLUTE MAXIMUM RATINGS ¹⁾ TLMPG3200, TLMYG3200					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		I _F	70	mA	
Power dissipation	$T_{amb} \le 65 ^{\circ}\text{C} (290 \text{K/W}),$ $T_{amb} \le 70 ^{\circ}\text{C} (270 \text{K/W})$	P _{tot}	180	mW	
Junction temperature		Tj	125	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Thermal resistance junction/	mounted on PC board	R _{thJA}	270	K/W	
ambient	(pad size > 5 mm ²)	R_{thJA}	290	K/W	

Note:

 $^{^{1)}}$ T_{amb} = 25 $^{\circ}$ C, unless otherwise specified

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ¹⁾ TLMPG3200, PURE GREEN						
PARAMETER	TEST CONDITION	SYMBOL	MIN	TYP.	MAX	UNIT
Luminous intensity	I _F = 50 mA	I _V	25	50		mcd
Luminous flux	I _F = 50 mA	I _V		140		mlm
Dominant wavelength	I _F = 50 mA	λ_{d}	555	564	567	nm
Peak wavelength	I _F = 50 mA	λ _p		565		nm
Spectral bandwidth at 50 % I _{rel max}	I _F = 50 mA	Δλ		15		nm
Angle of half intensity	I _F = 50 mA	φ		± 60		deg
Forward voltage	I _F = 50 mA	V _F		2.2	2.6	V
Reverse current	V _R = 5 V	V _R		0.01	10	μΑ

Note:

 $^{^{1)}}$ T_{amb} = 25 $^{\circ}C,$ unless otherwise specified

OPTICAL AND ELECTRICAL CHARACTERISTICS ¹⁾ TLMYG3200, YELLOW GREEN						
PARAMETER	TEST CONDITION	SYMBOL	MIN	TYP.	MAX	UNIT
Luminous intensity	I _F = 50 mA	I _V	63	130		mcd
Luminous flux	I _F = 50 mA	I _V		380		mlm
Dominant wavelength	I _F = 50 mA	λ_{d}	566	574	577	nm
Peak wavelength	I _F = 50 mA	λ_{p}		576		nm
Spectral bandwidth at 50 % I _{rel max}	I _F = 50 mA	Δλ		20		nm
Angle of half intensity	I _F = 50 mA	φ		± 60		deg
Forward voltage	I _F = 50 mA	V _F		2.2	2.6	V
Reverse current	V _R = 5 V	V _R		0.01	10	μΑ

Note:

TYPICAL CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified

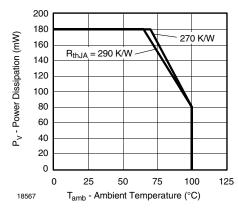


Figure 1. Power Dissipation vs. Ambient Temperature

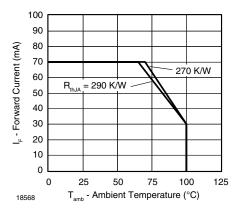


Figure 2. Forward Current vs. Ambient Temperature

 $^{^{1)}}$ T_{amb} = 25 $^{\circ}C,\ unless$ otherwise specified

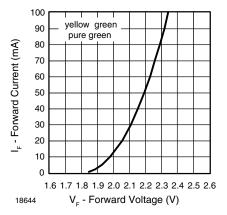


Figure 3. Forward Current vs. Forward Voltage

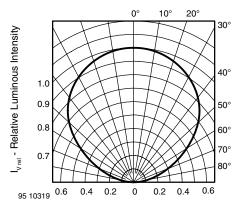


Figure 4. Rel. Luminous Intensity vs. Angular Displacement

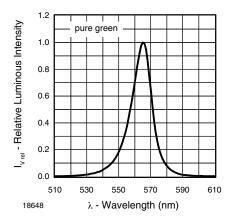


Figure 5. Relative Luminous Intensity vs. Wavelength

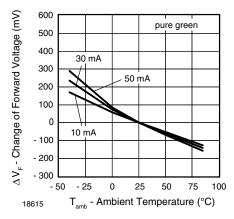


Figure 6. Change of Forward Voltage vs. Ambient Temperature

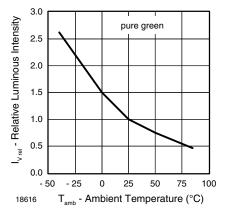


Figure 7. Rel. Luminous Intensity vs. Ambient Temperature

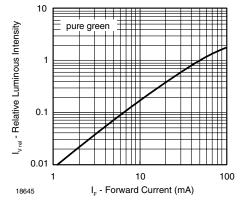


Figure 8. Relative Luminous Intensity vs. Forward Current

Vishay Semiconductors

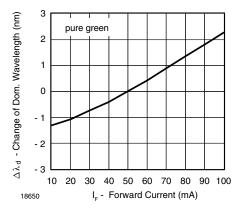


Figure 9. Change of Dominant Wavelength vs. Forward Current

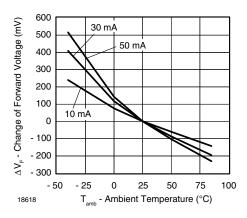


Figure 12. Change of Forward Voltage vs. Ambient Temperature

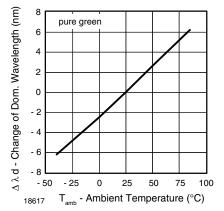


Figure 10. Change of Dominant Wavelength vs.

Ambient Temperature

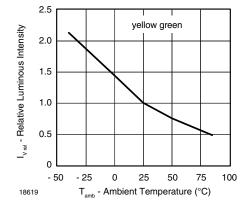


Figure 13. Rel. Luminous Intensity vs. Ambient Temperature

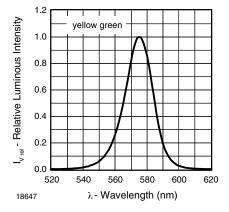


Figure 11. Relative Luminous Intensity vs. Wavelength

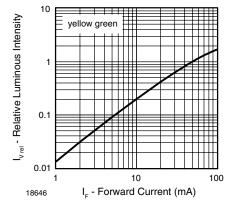


Figure 14. Relative Luminous Intensity vs. Forward Current

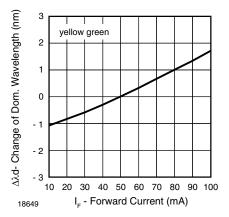
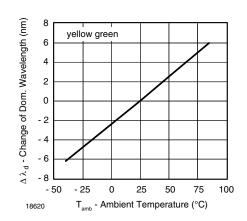
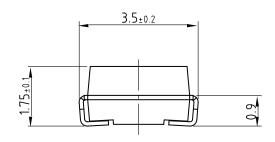
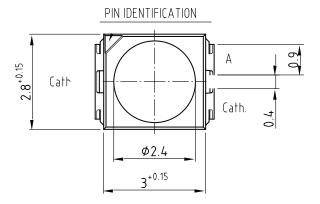


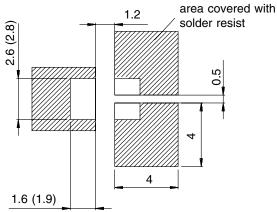
Figure 15. Change of Dominant Wavelength vs. Forward Current


Figure 16. Change of Dominant Wavelength vs.

Ambient Temperature

PACKAGE DIMENSIONS in millimeters



Drawing-No.: 6.541-5054.01-4

Issue: 2; 02.12.05

16276_1

Mounting Pad Layout

Dimensions: IR and Vaporphase (Wave Soldering)

TLMPG/TLMYG3200

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05