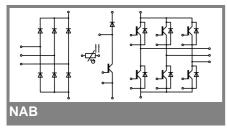


MiniSKiiP[®] 2

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 23NAB12T4V1

Features

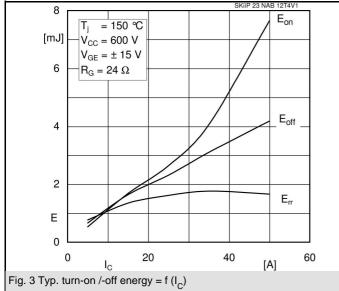

- Trench 4 IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

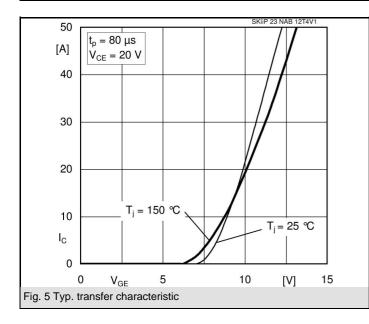
Typical Applications*

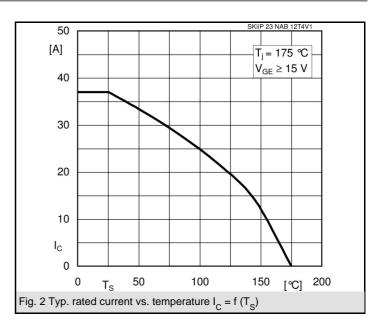
- Inverter up to 14 kVA
- Typical motor power 7,5 kW

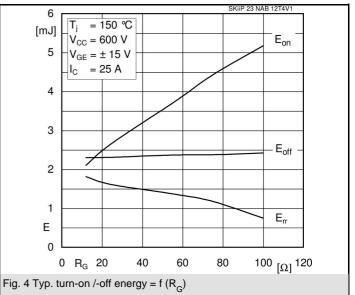
Remarks

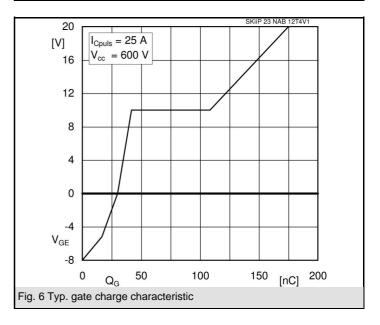
- V_{CEsat} , V_F= chip level value
- Case temp. limited to $T_C = 125$ °C max. (for baseplateless modules $T_C = T_S$)
- product rel. results valid for $T_j \le 150$ (recomm. $T_{op} = -40 \dots +150$ °C)

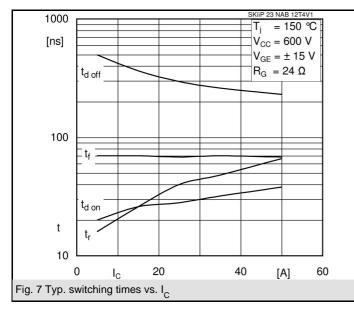


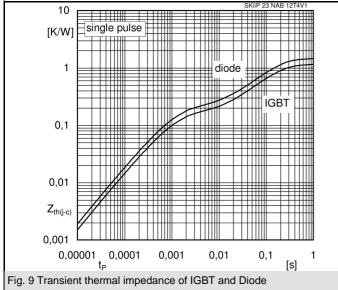

Absolute Maximum Ratings		$T_s = 25$ °C, unless otherwise specified		
Symbol	Conditions	Values	Units	
IGBT - In	verter, Chopper			
V _{CES}		1200	V	
I _C	T _s = 25 (70) °C	37 (30)	А	
I _{CRM}		75	A	
V _{GES}		± 20	V	
Т _ј		- 40 + 175	°C	
Diode - Ir	verter, Chopper	<u> </u>		
I _F	T _s = 25 (70) °C	30 (26)	А	
I _{FRM}		75	А	
T _j		- 40 + 175	°C	
Diode - R	ectifier		·	
V _{RRM}		1600	V	
I _F	T _s = 70 °C	46	А	
I _{FSM}	t _p = 10 ms, sin 180 °, T _i = 25 °C	370	A	
i²t	t _p = 10 ms, sin 180 °, T _i = 25 °C	680	A²s	
T _j		- 40 + 150	°C	
Module				
I _{tRMS}	per power terminal (20 A / spring)	40	А	
T _{stg}		- 40 + 125	°C	
V _{isol}	AC, 1 min.	2500	V	

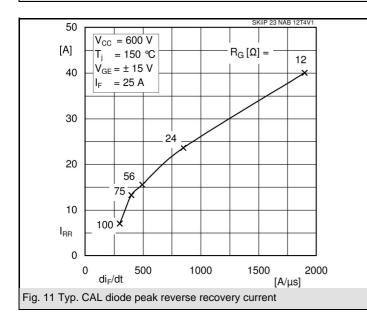

Characteristics ^T		$I_{s} = 25 ^{\circ}C$	r_s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - In	verter, Chopper					
V _{CEsat}	I _{Cnom} = 25 A, T _j = 25 (150) °C		1,85 (2,25)	2,05 (2,45)	V	
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 1 \text{ mA}$	5	5,8	6,5	V	
V _{CE(TO)}	T _j = 25 (150) °C		0,8 (0,7)	,	V	
r _T	$T_{j} = 25 (150) \ ^{\circ}C$		42 (62)	46 (66)	mΩ	
C _{ies}	$V_{CE} = 25 \text{ V}, \text{ V}_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$		1,4		nF	
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$		0,12		nF	
C _{res}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		0,085		nF	
R _{th(j-s)}	per IGBT		1,2		K/W	
t _{d(on)}	under following conditions		28		ns	
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		40		ns	
t _{d(off)}	I _{Cnom} = 25 A, T _j = 150°C		295		ns	
t _r	$R_{Gon} = R_{Goff} = 24 \Omega$		68		ns	
E _{on}	inductive load		2,65		mJ	
E _{off}			2,3		mJ	
Diode - Ir	verter, Chopper					
V _F = V _{EC}	I _{Fnom} = 25 A, T _i = 25 (150) °C		2,4 (2,45)	2,75 (2,8)	V	
V _(TO)	T _i = 25 (150) °Ć		1,3 (0,9)	1,5 (1,1)	V	
r _T	T _j = 25 (150) °C		44 (62)	50 (68)	mΩ	
R _{th(j-s)}	per diode		1,52		K/W	
I _{RRM}	under following conditions		23,6		Α	
Q _{rr}	I _{Fnom} = 25 A, V _R = 600 V		3,7		μC	
Err	V _{GE} = 0 V, T _i = 150 °C		1,6		mJ	
	di _F /dt = 850 Å/µs					
Diode - R	ectifier					
V _F	I _{Fnom} = 25 A, T _i = 25 °C		1,1		V	
V _(TO)	T _i = 150 °C		0,8		V	
r _T	T _i = 150 °C		13		mΩ	
R _{th(j-s)}	per diode		1,25		K/W	
	ture Sensor				1	
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω	
Mechanic	cal Data	I			1	
w			65		g	
Ms	Mounting torque	2		2,5	Nm	

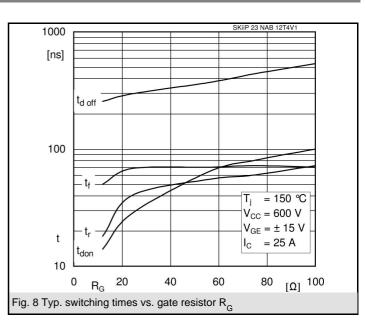

© by SEMIKRON

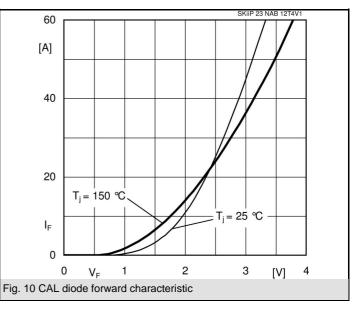


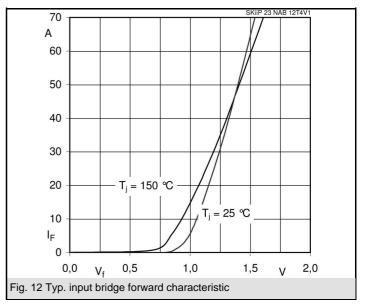


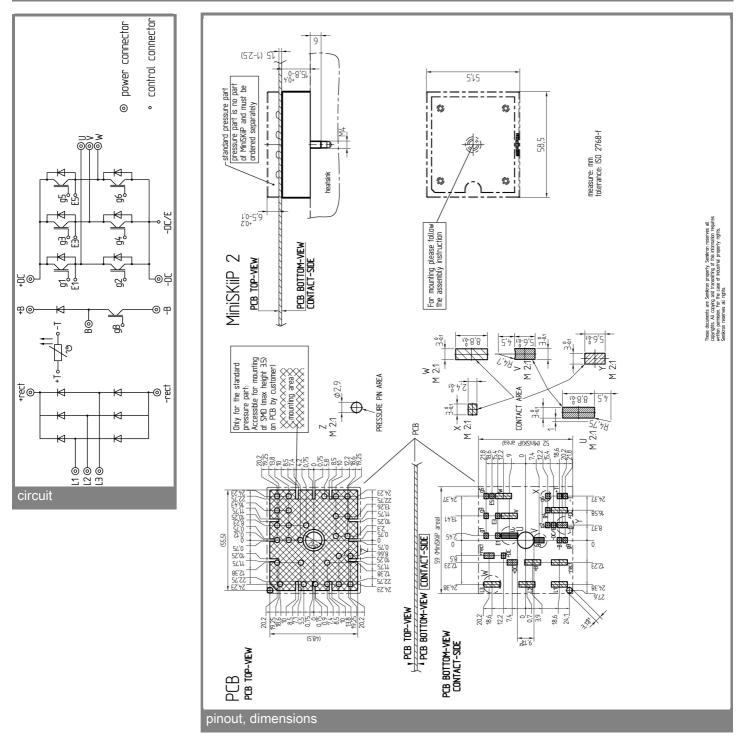












22-12-2009 LAN

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.