

SANYO Semiconductors **DATA SHEET**

LC74950BG — Silicon gate 40/30MSPS Analog Display I/F LSI

Overview

The LC74950BG is an analog display I/F IC that converts analog video signals into equivalent digital video signals. It incorporates 3 channels of ADC and a PLL circuit.

Features

- Maximum sampling frequency: 40MSPS
- 8-bit output
- Supports self-clamp (bottom/center switching) and digital clamp
- Input signal: 1.0Vp-p maximum
- External clock input
- Low jitter PLL
- Power down mode
- Low power consumption
- Input format: Supports RGB and YCbCr
- Built-in I²C bus interface

LSI Specifications

• Supply voltage Core: 1.5±10%

I/O: 3.3V±0.3V (40MHz) or 2.4V to 3.6V (30MHz)

• Maximum operating frequency: 40MHz

• Package: FBGA96

Principal Applications

• Small-size monitors

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Functions & Overview

1. Input

All the inputs listed below can be connected to the analog ports. It is also possible to switch between the inputs of two systems and use the one selected.

YCbCr/YPbPr input (480I/576I, 480P/576P): Component input

RGB: RGB input

External clock supported

2. Output

Digital 8-bit/channel output

3. Clamp

Analog clamping and digital clamping supported

4. Gain

Digital gain adjustment

5. PLL circuit

This circuit can be used as the H lock or frequency-multiplied clock. It is also possible to use the PLL circuit and analog-digital converter (ADC) independently.

H lock PLL circuit: This makes it possible to generate a clock synchronized with the external H sync signal.

Frequency-multiplier PLL circuit: This makes it possible to generate clocks synchronized with an external clock.

6. External interface

I²C: This supports the 100kHz mode. It is possible to select slave addresses by establishing pin settings.

Slave addresses: 0x98, 0x9A

7. PDOWN

Power-down of the whole system can be controlled using the PDOWN pin. Alternatively, the ADC, PLL and other circuits can be powered down separately using register settings. This makes it possible to limit the power as required.

Specifications

Absolute Maximum Ratings at Ta = 25°C, $DV_{SS} = 0V$, $AV_{SS} = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage (I/O)	DV _{DD} 33 AV _{DD} 33		-0.3 to +3.95	٧
Maximum supply voltage (core)	DV _{DD} 15 AV _{DD} 15		-0.3 to +1.8	٧
Digital input voltage	VI		-0.3 to +5.5	V
	V _I (when in low voltage)		-0.3 to DV _{DD} 33+0.3	V
Digital output voltage	VO		-0.3 to DV _{DD} 33+0.3	V
Operating temperature	Topr		-30 to +70	°C
Storage temperature	Tstg		-55 to +125	°C

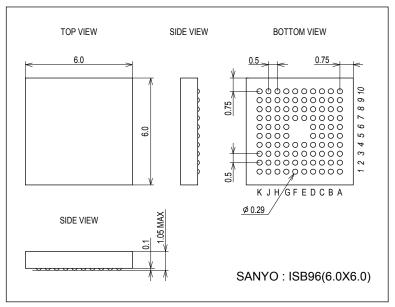
Allowable Operating Ranges at $Ta = -30 \text{ to } +70^{\circ}\text{C}$

Donomotor	Comple at	O subst		Ratings			
Parameter	Symbol	Symbol Conditions		typ	max	unit	
Supply voltage (I/O)	AV _{DD} 33		3.00	3.3	3.60	V	
	DV _{DD} 33	Max 40MHz	3.00	3.3	3.60	V	
		Max 30MHz	2.40	3.3	3.60	V	
Supply voltage (I/O)	DV _{DD} 15 AV _{DD} 15		1.35	1.5	1.65	٧	
Input voltage range (5V withstand voltage pin)	V _{IN} 5		0		5.5	٧	
Input voltage range (non-5V withstand voltage pin)	V _{IN}		0		3.9	V	

DC Characteristics at Ta = -30 to +70 °C, $DV_{DD}33 = 3.3V \pm 0.3V$ (other than low-voltage support models), $DV_{DD}15 = 1.5 \pm 10\%$

		0 1111		Ratings		
Parameter	Symbol	Conditions	min	typ	max	unit
Input high-level voltage	V _{IH}	CMOS level inputs (5V withstand voltage pin)	0.8DV _{DD} 33		5.5	٧
		CMOS level inputs (2.4V to 3.6V or non-5V withstand voltage pin)	0.8DV _{DD} 33		DV _{DD} 33	٧
		CMOS level Schmitt inputs (5V withstand voltage pin)	2.0		5.5	>
		CMOS level Schmitt inputs (2.4V to 3.6V or non-5V withstand voltage pin)	0.8DV _{DD} 33		DV _{DD} 33	>
Input low-level voltage	V _{IL}	CMOS level inputs	0		0.2V _{DD} 33	V
		CMOS level Schmitt inputs	0		0.2V _{DD} 33	V
Input high-level current	lн	$V_I = DV_{DD}$			10	μΑ
		V _I =DV _{DD} , with pull-down resistance		100		μΑ
Input low-level current	I _{IL}	V _I =V _{SS}	-10			μА
Output high-level voltage	Voн	CMOS (Pin G/I: I _{OH} =-4mA, Pin F: when set to -6mA)	DV _{DD} -0.6			V
Output low-level voltage	V _{OL}	CMOS			0.4	V
Output leak current	loz	At output of high-impedance	-10		10	μΑ
Pull-down resistor	R _{DN}	3.0V to 3.6V		58		kΩ
		2.4V to 3.6V		70		kΩ
Dynamic supply current (DV _{DD} 33)	IDDOP	Outputs open, tck=27MHz natural image, Ta=25°C		13		mA
Dynamic supply current (DV _{DD} 15)		tck=27MHz: natural image, Ta=25°C		7		mA
Dynamic supply current (AV _{DD} 33)		tck=27MHz: natural image, Ta=25°C		52		mA
Dynamic supply current (AV _{DD} 15)		tck=27MHz: natural image, Ta=25°C		0.1		mA
Static supply current: *1	IDDST	Outputs open, V _I =V _{SS} , Ta=25°C		10		μΑ

^{*1:} There is an input terminal which builds in pull down resistance. Please note that there is no guarantee about static consumption current depending on circuit composition.

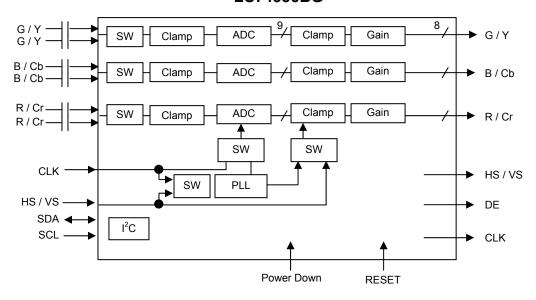

A/D Convertor Characteristics at $Ta=25^{\circ}C,\,DV_{SS}=0V,\,AV_{SS}=0V$

Parameter	Symbol/pin	min	typ	max	Unit
ADC resolution				9	bit
Clock frequency	Fclk	5		40	MHz
SNR			48		dB
DNL			±0.5		LSB
INL			±1.0		LSB
External capacitance					
Analog input coupling capacitance	Analog video pin		0.1		μF
Top level reference fixed capacitance	VRTx pin		0.01		μF
Bottom level reference capacitance	VRBx pin		0.01		μF
Analog input frequency	FAIN			10	MHz
Analog input amplitude			1.0		V
ADC stabilization time (time required to restore from standby mode)				500	ms
PLL lock time				3	ms

Package Dimensions: FBGA96

unit: mm (typ)

3387


Pin Assignment

LC74950BG

Top view

Block Diagram

LC74950BG

Pin Functions

Pin No.	Pin symbol	In/outpu	ut format	Conn	ecting	Remarks
FIII NO.	Fill Syllibol	I/O	Format	destination		Remains
A1	ADC2AV _{SS} 33	Р		GND	Analog	It must be treated in the same way as an NC pin.
A2	CBOUT0	I/O	I	3.3V CMOS	Digital	Video signal output Cb or B (LSB)
А3	CBOUT2	I/O	1	3.3V CMOS	Digital	Video signal output Cb or B
A4	CBOUT4	I/O	- 1	3.3V CMOS	Digital	Video signal output Cb or B
A5	CBOUT6	I/O	I	3.3V CMOS	Digital	Video signal output Cb or B
A6	PDWN	1	В	3.3V CMOS	Digital	Power DOWN "L" Power DOWN
A7	AV _{SS} 33_PLL	Р		GND	Analog	
A8	CHRGPMP	0	Α		Analog	Filter input
A9	AV _{DD} 33_PLL	Р		3.3V	Analog	PLL power supply
A10	DV _{DD} 15	Р		1.5V	Digital	
B1	VRT2	1	Α		Analog	Top level reference voltage connection pin for ADC2
B2	ADC2AV _{SS} 33	Р		GND	Analog	
В3	CBOUT1	I/O	I	3.3V CMOS	Digital	Video signal output Cb or B
B4	CBOUT3	I/O	I	3.3V CMOS	Digital	Video signal output Cb or B
B5	CBOUT5	I/O	I	3.3V CMOS	Digital	Video signal output Cb or B
В6	CBOUT7	I/O	I	3.3V CMOS	Digital	Video signal output Cb or G (MSB)
В7	DV _{SS}	Р		GND	Digital	
В8	AV _{SS} 33_PLL	Р		GND	Analog	
В9	DV _{DD} 15	Р		1.5V	Digital	It must be treated in the same way as an NC pin.
B10	HSIN	1	В	3.3V CMOS	Digital	Horizontal synchronizing signal
C1	CRIN1	1	Α	to 1.0Vp-p	Analog	Analog CR or R input (ADC2)
C2	VRB2	1	Α		Analog	Bottom level reference voltage connection pin for ADC2
C3	ADC2AV _{DD} 33A	Р		3.3V	Analog	
C4	DV _{SS}	Р		GND	Digital	
C5	DV _{SS}	Р		GND	Digital	
C6	DV _{SS}	Р		GND	Digital	
C7	DV _{DD} 15	Р		1.5V	Digital	
C8	DV _{DD} 15	Р		1.5V	Digital	
C9	VSIN	1	В	3.3V CMOS	Digital	Vertical synchronizing signal
C10	RESET	1	В	3.3V CMOS	Digital	System reset "L" reset

Continued on next page.

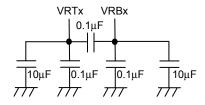
Continued	from	preceding	nage
Commuca	пош	Dieceume	Dage.

Pin No.	Pin symbol	In/outp	ut format	Conne	=	Remarks
1 111110.	T III Symbol	I/O	Format	destir	nation	remains
D1	VRT1	I	Α			Top level reference voltage connection pin for ADC1
D2	CRIN0	I	Α	to 1.0Vp-p	Analog	Analog CR or R input (ADC2)
D3	ADC1AV _{SS} 33	Р		GND	Analog	
D4	DV _{SS}	Р		GND	Digital	
D5	DV _{SS}	Р		GND	Digital	
D6	DV _{SS}	Р		GND	Digital	
D7	DV _{DD} 15	Р		1.5V	Digital	
D8	DV _{DD} 15	Р		1.5V	Digital	
D9	CLKOUT2	0	F	3.3V CMOS	Digital	CLKOUT1×2 output or PLL output
D10	CLKOUT1	0	F	3.3V CMOS	Digital	Datasynchronization clock output
E1	CBIN1	1	Α	to 1.0Vp-p	Analog	Analog CB or B input (ADC1)
E2	VRB1	I	Α			Bottom level reference voltage connection pin for ADC1
E3	ADC1AV _{DD} 33A	Р		3.3V	Analog	
E4	DV_SS	Р		GND	Digital	
E7	DV _{DD} 15	Р		1.5V	Digital	
E8	I ² CSEL	I	С	3.3V CMOS		I ² C slave addresses L=0×98, H=0×9A
E9	SCL	I	D		Digital	
E10	COAST	I	В	3.3V CMOS	Digital	Connected to GND
F1	VRT0	1	Α		Analog	Top level reference voltage connection pin for ADC0
F2	CBIN0	I	Α	to 1.0Vp-p	Analog	Analog CB or B input (ADC1)
F3	ADC0AV _{SS} 33	Р		GND	Analog	
F4	DV _{SS}	Р		GND	Digital	
F7	DV _{DD} 15	Р		1.5V	Digital	
F8	TEST	I	Н	3.3V CMOS	Digital	Test pin (normally fixed low)
F9	SDA	I/O	G		Digital	
F10	CLKIN	1	D	3.3V CMOS	Digital	System clock (Must be connected to GND when not to be used)
G1	YGIN1	I	Α	to 1.0Vp-p	Analog	Analog Y or G input (ADC0)
G2	VRB0	I	Α		Analog	Bottom level reference voltage connection pin for ADC0
G3	ADC0AV _{DD} 33	Р		3.3V	Analog	
G4	SCANEN	I	Н	3.3V CMOS	Digital	Test pin (normally, Lo)
G5	DV _{DD} 33	Р		3.3V	Digital	
G6	DV _{DD} 33	Р		3.3V	Digital	
G7	DV _{DD} 33	Р		3.3V	Digital	
G8	DV _{DD} 33	Р		3.3V	Digital	
G9	HSOUT	I/O	I	3.3V CMOS	Digital	Horizontal synchronizing signal
G10	VSOUT	I/O	I	3.3V CMOS	Digital	Vertical synchronizing signal
H1	АТВ	0	А			Analog output for testing the ADC. It must be held open when not to be used.
H2	YGIN0	1	Α	to 1.0Vp-p	Analog	Analog Y or G input (ADC0)
НЗ	AV _{DD} 15_OSC	Р		1.5V	Analog	Power supply for the RC oscillator
H4	SCANMOD	I	Н	3.3V CMOS	Digital	Test pin (normally, Lo)
H5	DV _{DD} 33	Р		3.3V	Digital	
H6	DV _{DD} 33	Р		3.3V	Digital	
H7	DV _{DD} 33	P		3.3V	Digital	
H8	DV _{DD} 33	<u>.</u> Р		3.3V	Digital	
H9	CROUT7	I/O	1	3.3V CMOS	Digital	Video signal output Cr or R (MSB)
H10	DEOUT	I/O	i	3.3V CMOS	Digital	Data enable. It must be held open when not to be used.

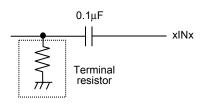
Continued on next page.

Continued from preceding page.

from preceding pag	36.				
Pin symbol	·			J	Remarks
	I/O	Format	destir	lation	
SVO	0	Α	to 1.0Vp-p	Analog	Test pin. It must be held open when not to be used.
AV _{SS} _OSC	Р		GND	Analog	
YGOUT1	I/O	I	3.3V CMOS	Digital	Video signal output Y or G
YGOUT7	I/O	I	3.3V CMOS	Digital	Video signal output Y or G (MSB)
YGOUT4	I/O	1	3.3V CMOS	Digital	Video signal output Y or G
CROUT0	I/O	I	3.3V CMOS		Video signal output Cr or R (LSB)
CROUT3	I/O	I	3.3V CMOS	Digital	Video signal output Cr or R
CROUT5	I/O	1	3.3V CMOS	Digital	Video signal output Cr or R
DV _{DD} 33	Р		3.3V	Digital	
CROUT6	I/O	I	3.3V CMOS	Digital	Video signal output Cr or R
AV _{SS} _OSC	Р		GND	Analog	It must be treated in the same way as an NC pin.
YGOUT0	I/O	1	3.3V CMOS	Digital	Video signal output Y or G (LSB)
YGOUT2	I/O	1	3.3V CMOS	Digital	Video signal output Y or G
YGOUT3	I/O	1	3.3V CMOS	Digital	Video signal output Y or G
YGOUT5	I/O	1	3.3V CMOS	Digital	Video signal output Y or G
YGOUT6	I/O	1	3.3V CMOS	Digital	Video signal output Y or G
CROUT1	I/O	I	3.3V CMOS		Video signal output Cr or R
CROUT2	I/O	I	3.3V CMOS	Digital	Video signal output Cr or R
CROUT4	I/O	ı	3.3V CMOS	Digital	Video signal output Cr or R
DV _{DD} 33	Р		3.3V	Digital	It must be treated in the same way as an NC pin.
	Pin symbol SVO AVSS_OSC YGOUT1 YGOUT7 YGOUT4 CROUT0 CROUT3 CROUT5 DVDD33 CROUT6 AVSS_OSC YGOUT0 YGOUT2 YGOUT3 YGOUT5 YGOUT6 CROUT1 CROUT5 CROUT1 CROUT1	Pin symbol I/O SVO O AVSS_OSC P YGOUT1 I/O YGOUT7 I/O YGOUT4 I/O CROUT3 I/O CROUT5 I/O DVDD33 P CROUT6 I/O AVSS_OSC P YGOUT0 I/O YGOUT0 I/O CROUT5 I/O DVDD33 IP CROUT6 I/O AVSS_OSC P YGOUT0 I/O YGOUT2 I/O YGOUT3 I/O YGOUT3 I/O CROUT5 I/O CROUT1 I/O CROUT1 I/O CROUT1 I/O CROUT1 I/O CROUT2 I/O CROUT1 I/O CROUT1 I/O CROUT2 I/O	In/output format	In/output format	Description

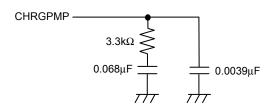

Pin Type

In/Output form	Function	Equivalent circuit	Application Terminal
А	Analog input/output	<u></u>	CHRGPMP, CRIN0, CRIN1, VRT2, VRB2, CBIN0, CBIN1, VRT1, VRB1, YGIN0, YGIN1, VRT0, VRB0, SVO, ATB
В	5V withstand Schmitt trigger CMOS input *		HSIN, PDWN, VSIN, COAST, RESET
С	5V withstand CMOS input with built-in pull-down resistor *		I ² CSEL
D	5V withstand CMOS input *		CLKIN, SCL
F	12mA switching 3-STATE drive CMOS output		CKOUT1, CKOUT2
G	8mA 3-STATE drive CMOS input/output * (5V withstand)		SDA
Н	CMOS input with built-in pull-down resistor		TEST, SCANEN, SCANMOD
I	8mA 3-STATE drive CMOS input/output		HSOUT, VSOUT, DEOUT, CROUTO, CROUT1, CROUT2, CROUT3, CROUT4, CROUT5, CROUT6, CROUT7, CBOUT4, CBOUT5, CBOUT6, CBOUT7, CBOUT0, CBOUT1, CBOUT2, CBOUT3, YGOUT0, YGOUT1, YGOUT2, YGOUT3, YGOUT4, YGOUT5, YGOUT6, YGOUT7

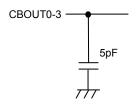

^{*: 5}V Tolerant

Pin Connection

1) ADC and its peripherals



VRTx: VRT0, VRT1, VRT2 VRBx: VRB0, VRB1, VRB2



YGIN0, YGIN1 CRIN0, CRIN1 CBIN0, CBIN1

2) PLL and its pereipherals

3) Output pin (recommended)

4) Power supplies

The analog A** and digital D** power supplies must be supplied separately without fail. In addition, the power supply for the PLL circuit must also be provided separately as it will affect the jitter characteristics of the PLL circuit. For ADC power supply, it is desirable to provide separate power for each of the ADC channel.

AVDD33_PLL : Must be separated by L components, etc.

ADC2AV_{DD}33A: Separating by L components, etc. recommended ADC1AV_{DD}33A: Separating by L components, etc. recommended ADC0AV_{DD}33A: Separating by L components, etc. recommended

5) Unused pin treatment

YGIN0, 1/CBIN0, 1/CRIN0, 1: Open

PDWN: Pull up

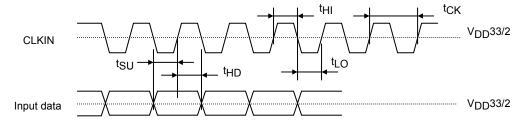
CHRGPMP: Open (when PLL is not in use)

***OUT* (e.g., YGOUT0): Open

HSIN/VSIN: Must always be configured for input. RESET: Must always be configured for input.

COAST: Must be connected to DVSS. TEST, SCANEN, SCANMOD: DVSS

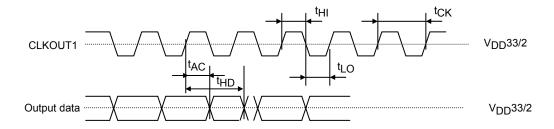
CLKIN: DVSS


HSOUT, VSOUT, DEOUT: Open

SVO, ATB: Open

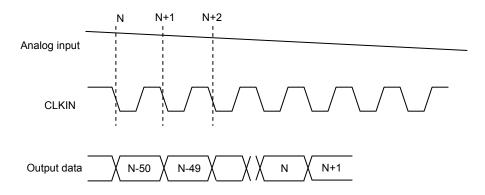
* The specified voltage of power must be applied to each of the power supply pin even if it is not to be used (PLL is not to be used, for example).

I/O Data Timing


(1) Input data timing

Pin name	Parameter	Symbol	min	typ	max	unit
CLKIN	Clock cycle	tCK	25			ns
	Duty			50		%
	Input data setup time (DV _{DD} 33=3.0 to 3.6V)	t _{SU}	3.0			ns
LICINI VICINI	Input data setup time (DV _{DD} 33=2.4 to 3.6V)	t _{SU}	3.0			ns
HSIN, VSIN	Input data hold time (DV _{DD} 33=3.0 to 3.6V)	tHD	3.0			ns
	Input data hold time (DV _{DD} 33=2.4 to 3.6V)	t _{HD}	3.0			ns

^{*:} The recommended duty cycle of input clock is 50%


(2) Output data timing

Pin name	Parameter	Symbol	min	typ	max	unit
CLKOUT1	Clock cycle	t _{CK}	25			ns
	Duty			50		%
	Output data delay time (3.0 to 3.6V)	^t AC	0		2.0	ns
YGOUT*, CBOUT*, CROUT*,	Output data delay time (2.4 to 3.6V)	^t AC	0		3.0	ns
HSOUT ,VSOUT, DEOUT	Output data hold time (3.0 to 3.6V)	t _{HD}	3.0			ns
	Output data hold time (2.4 to 3.6V)	^t HD	3.0			ns

^{*} When CLKOUT1 is set to the forward rotation output.

Timing Chart

Note: For the initial setting of the registers

Details of the functions

1. Selection of input pins

Registers related to the selection of input pins

Name	Functions	Sub address	bit width
AINSEL	Video input select control	0x22	1
	Analog video input select		
	0: YGIN0/CBIN0/CRIN0		
	1: YGIN1/CBIN1/CRIN1		

• Video input selector function

The video input signal used for actual processing can be selected out of the two systems of video input.

AINSEL=0: YGIN0/CBIN0/CRIN0 AINSEL=1: YGIN1/CBIN1/CRIN1

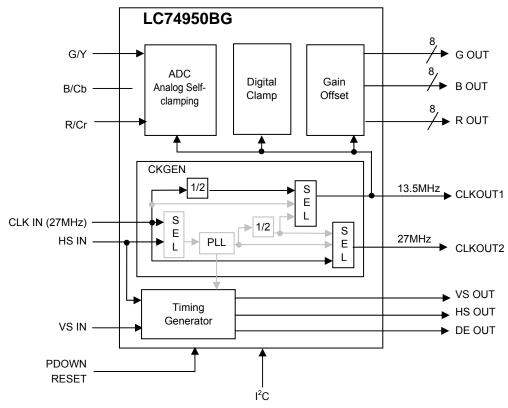
2. Input format

Registers related to the selection of the input format

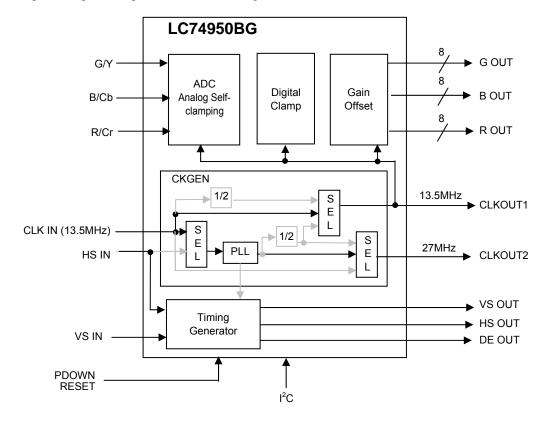
Name	Functions	Sub address	bit width
SELYCRGB	This register switches between the YCbCr input and RGB input.	0x14	1
	0: YCbCr, 1: RGB		
SYNCON	For YCbCr input, this register, by cutting off the digitally clamped sync component of the	0x1B	1
	Y video signal, sets the applicable gain adjustment function to ON or OFF.		
	This must be set to 0 for the RGB input (SELYCRGB=1).		
	0: ON, 1: OFF		

All the inputs listed below can be connected to the analog ports. It is also possible to switch between the inputs of two systems and use the one selected.

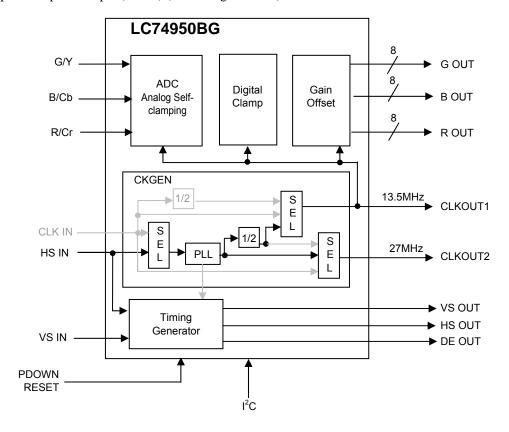
YCbCr/YPbPr input (480I/576I, 480P/576P): Component input


RGB: RGB input

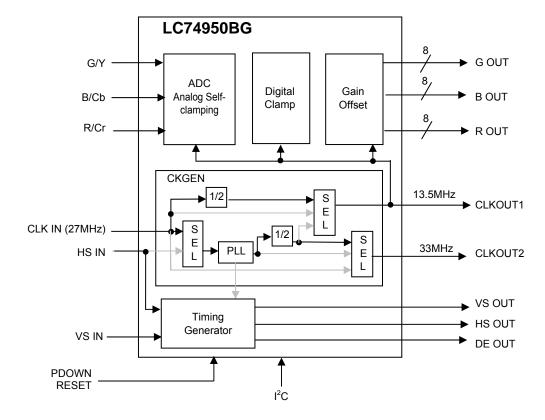
3. Operating modes


Register related to the selection of operating mode

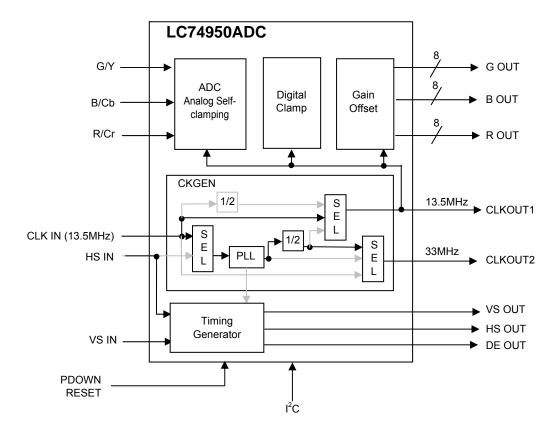
Name	Functions	Sub address	bit width
CLKSEL	Operating mode selection	0x00	3
	000: External clock mode (PLL not used)		
	001: External clock mode (PLL used)		
	010: H lock PLL mode		
	011: Panel PLL mode <1>		
	100: Panel PLL mode <2>		


1) External clock mode (PLL not used: CLKOUT1=CLKIN/2, CLKOUT2=CLKIN) Example: Component input (NTSC) (down sample)

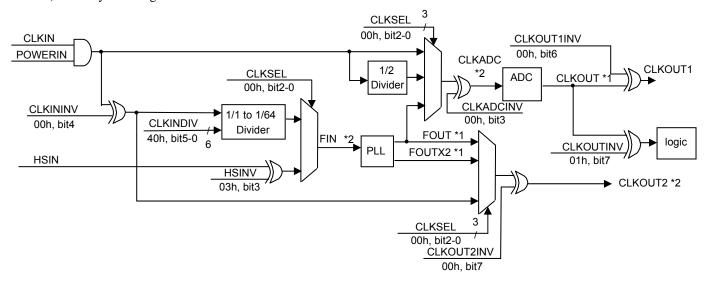
2) External clock mode (PLL used: CLKOUT1=CLKIN, CLKOUT2=CLKIN*2) Example: Component input (NTSC) (2× clock generation)


3) H-lock PLL mode (PLL used: CLKOUT1=HS/Divide, CLKOUT2=CLKOUT1*2) Example: Component input (NTSC) (2× clock generation)

4) ADC/PLL independent mode <1>


(External clock input, PLL configured independently: CLKOUT1=CLKIN/2, CLKOUT2=CLKIN/In-Divide*Out-Divide)

Example: Component (ADC down sample), PLL: Generation of separate system clock


5) ADC/PLL independent mode <2>

(External clock input, PLL configured separately: CLKOUT1=CLKIN, CLKOUT2=CLKIN/In-Divide*Out-Divide) Example: Component (ADC down sample), PLL: Generation of separate system clock

4. Clock system

1) Clock system diagram

*1 Explanation of signals

FOUT: A clock generated in the PLL circuit and synchronized with the reference signal (FIN). The frequency of FIN and PLL divider value (HPLDIV, 28h-29h, bits 15-0) determine the frequency of FOUT.

FOUTX2: A clock generated in the PLL circuit and synchronized with the reference signal (FIN). The frequency of

FOUTX2 is two times of the frequency of FOUT.

CLKOUT: A clock generated in the ADC. To output the clock it is necessary to adjust the phase of the sampling clock

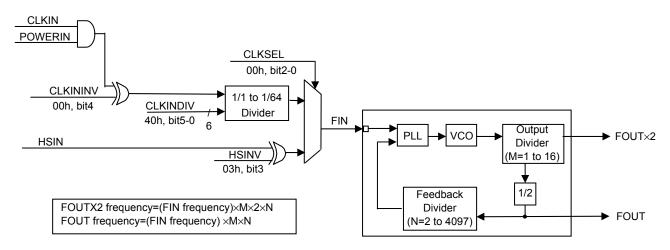
(CLKADC) in order that the rising edge of the clock does not occur near the change point of the ADC

sampled data.

Registers related to the control of clock

Name	Functions	Sub address	bit width
CLKININV	This register controls the inversion of CLKIN when the CLKIN input is used as a	0x00	2
	reference clock to PLL.		
	0: Uses CLKIN in its original form		
	1: Uses CLKIN in its inverted form		
HSINV	This register controls the inversion of HSIN input. The HSIN must be used in its	0x02	1
	inverted form when the polarity of HSIN input is negative.		
	0: Original form (when HSIN is positive)		
	1: Inverted form (when HSIN is negative)		
CLKINDIV	This register sets the frequency division ratio of CLKIN to an arbitrary value	0x40	6
	(1/1 to1/64) when the CLKIN is used as a reference clock to PLL.		
	1/(CLKINDIV[5:0]+1) division		
CLKSEL	This register selects the operating mode.	0x00	3
	000: (External clock mode (PLL not used)		
	001: (External clock mode (PLL used)		
	010: H-lock PLL mode		
	011: Panel PLL mode <1>		
	100: Panel PLL mode <2>		
CLKADCINV	This register controls the inversion of the ADC sampling clock (CLKADC).	0x00	1
	0: Uses CLKADC in its original form		
	1: Uses CLKADC in its inverted form		
CLKOUTINV	This register controls the inversion of the ADC-generated clock. (CLKOUT).	0x01	1
	0: Uses CLKOUT in its original form		
	1: Uses CLKOUT in its inverted form		
CLKOUT1INV	This register controls the inversion of CLKOUT (video clock output).	0x00	1
	0: Original form		
	1: Inverted form		
CLKOUT2INV	This register controls the inversion of CLKOUT2 (panel clock output).	0x00	1
	0: Original form		
	1: Inverted form		

*2 Clock control register (CLKSEL, 00h, bits 2-0) specifications


CLKSEL (bit2-0)	CLKADC*3 (ADC sampling clock)	FIN (PLL reference)	CLKOUT2 (Clock output)	Remarks
000	CLKIN/2 (13.5MHz)	L fixed (PLL not used)	CLKIN(27MHz)	External clock mode (PLL not used)
001	FOUT (PLL output)	CLKIN *4	FOUTX2 (PLL output X2)	External clock mode (PLL used)
010	FOUT (PLL output)	HSIN *5	FOUTX2 (PLL output X2)	H-lock PLL mode
011	CLKIN/2	CLKIN *4	FOUT (PLL output)	Panel PLL mode <1>
100	CLKIN	CLKIN *4	FOUT (PLL output)	Panel PLL mode <2>

^{*3:} Register CLKADCINV (00h, bit 3) allows for clock inversion.

^{*4:} Register CLKINDIV (40h, bits 5-0) allows for division of clock frequency (1/1 to 1/64).

^{*5:} Register HSINV (03h, bit 3) allows for HSIN inversion.

2) PLL circuit

This circuit can be used as the H lock or frequency-multiplied clock. It is also possible to use the PLL circuit and analog-digital converter (ADC) independently.

H lock PLL circuit: This makes it possible to generate a clock that is synchronized with the external H sync signal. Frequency-multiplier PLL circuit: This makes it possible to generate clocks that are synchronized with an external clock.

Registers related to the setting of PLL circuit

Name	Functions	Sub address	bit width
CLKININV	This register controls the inversion of CLKIN when the CLKIN input is used as a	0x00	2
	reference clock to PLL.		
	0: Uses CLKIN in its original form		
	1: Uses CLKIN in its inverted form		
HSINV	This register controls the inversion of HSIN input. The HSIN must be used in its	0x02	1
	inverted form when the polarity of HSIN input is negative.		
	0: Original form (when HSIN is positive)		
	1: Inverted form (when HSIN is negative)		
CLKINDIV	This register sets the frequency division ratio of CLKIN to an arbitrary value	0x40	6
	(1/1 to 1/64) when the CLKIN is used as a reference clock to PLL.		
	1/(CLKINDIV[5:0] 1) division		
CLKSEL	This register selects the PLL reference input.	0x00	3
	000: L fixed (PLL not used)		
	001: External clock input (CLKIN)		
	010: External Hsync input (HSIN)		
	011: External clock input (CLKIN)		
	100: External clock input (CLKIN)		
HPLDIV15-12	This register sets the output divider (M-1, NTSC, 480i=3).	0x28	4
HPLDIV11-0	This register sets the feedback divider (N-2, NTSC, 480i=856).	0x28	12
	H-lock PLL output frequency (1x)=Hsync frequency×N	0x29	
	H-lock PLL output frequency (2x)=Hsync frequency×N×2		
	* After changing the setting, an interval of 3.0ms is required for the H-lock PLL to get		
	stabilized.		

Continued on next page.

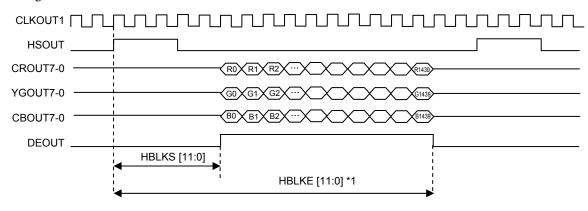
Continued from preceding page.

Name	Functions	Sub address	bit width
PLLGAIN	This register switches the setting of Fmin, Fmax, and Gain of the H-lock PLL VCO.	0x27	3
	000: Fmin=60MHz, Fmax=240MHz, Gain=120MHz/V←Standard setting		
	001: Fmin=Standard, Fmax=Standard-20%, Gain=Standard-22.5%		
	010: Fmin=Standard-20%, Fmax=Standard, Gain=Standard+2.5%		
	011: Fmin=Standard-20%, Fmax=Standard-20%, Gain=Standard-20.0%		
	100: Fmin=Standard+20%, Fmax=Standard+10%, Gain=Standard+8.75%		
	101: Fmin=Standard+20%, Fmax=Standard-10%, Gain=Standard-13.75%		
	110: Fmin=Standard, Fmax=Standard+10%, Gain=Standard+11.25%		
	111: Fmin=Standard, Fmax=Standard-10%, Gain=Standard-11.25%		
	* After changing the setting, an interval of 3.0ms is required for the H-lock PLL to get		
	stabilized.		
PLLCTL2	H-lock PLL power down mode	0x27	1
	0: Normal operation		
	1: H-lock PLL power OFF		
PLLCTL1	H-lock PLL Normal Mode FOUT Disable	0x27	1
	0: Normal operation		
	1: H-lock PLL output= L fixed		
CPIS_COAST	These registers set the PLL charge pump constant current	0x2A	4
CPIS_ORG	(make sure that CPIS_COAST=CPIS_ORG)		
	0000: 40μΑ		
	0001: 60μΑ		
	0010: 120μΑ		
	0011: 180μΑ		
	0100: 200μΑ		
	0110: 280μΑ		
	0101: 300μΑ		
	1000: 360μΑ		
	0111: 420μΑ		
	1010: 440μA ←Standard setting		
	1100: 520μΑ		
	1001: 540μΑ		
	1110: 600μΑ		
	1011: 660μΑ		
	1101: 780μΑ		
	1111: 900μΑ		
	* After changing the setting, an interval of 3.0ms is required for the H-lock PLL to get		
	stabilized.		

PLL setting example (when using as H-lock PLL)

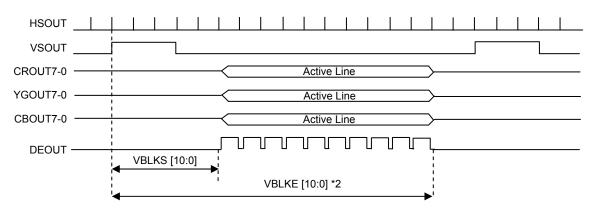
3			I TOUR I E						l
	Ref	CLKSEL	PLLDIV	PLLDIV	FVCO*	FOUTX2	FOUT	CPIS	PLLGAIN
	[kHz]	[2:0]	15-12	11-0	[MHz]	[MHz]	[MHz]	[3:0]	[2:0]
NTSC	15.734	2h	3h	6B2h	216	(54)	27	Ch	0h
NTSC	15.734	2h	7h	358h	216	27	13.5	Ch	0h
PAL	15.630	2h	3h	6BEh	216	(54)	27	Ch	0h
PAL	15.630	2h	7h	35Eh	216	27	13.5	Ch	0h
PAL-N	15.630	2h	7h	35Eh	216	27	13.5	Ch	0h
PAL-M	15.734	2h	7h	358h	216	27	13.5	Ch	0h
QVGA	15.70	2h	Fh	1A6h	213	13.3	6.68	Ch	0h
VGA	31.5	2h	3h	31Eh	201	(50.4)	25.2	Ch	0h
WVGA	31.0	2h	3h	41Eh	262	(65.4)	32.7	Dh	0h

^{*20}MHz < FVCO < 340MHz


5. Timing control

1) DEOUT (enable output) setting

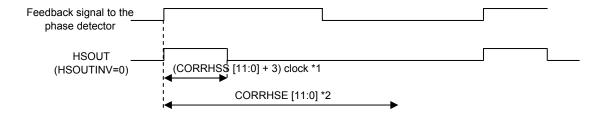
Registers related to the setting of enable


Name	Functions	Sub address	bit width
HBLKS	This register specifies the 1H start position of DEOUT in dot units.	0x04	12
	Set value smaller than HBLKE.	0x05	
HBLKE	This register specifies the 1H end position of DEOUT in dot units.	0x04	12
	Set the value that is larger than HBLKS and does not overlap the next Hsync.	0x06	
VBLKS	This register specifies the 1V start position of DEOUT in line units.	0x07	11
	Set the value smaller than VBLKE.	0x08	
VBLKE	This register specifies the 1V end position of DEOUT in line units.	0x07	11
	Set the value that is larger than VBLKS and does not overlap the next Vsync.	0x09	

• Setting of horizontal enable

*1: DEOUT is forcibly disabled at the leading edge of the next HSOUT even if HBLKE[11:0] is set with a value larger than the total pixel count of 1H.

• Setting of vertical enable


*2: DEOUT is forced disabled at the leading edge of the next VSOUT even if VBLKE[10:0] is set with a value larger than the total line count of 1V.

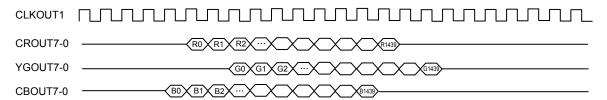
2) SYNC width adjustment (H-lock PLL mode only) of horizontal sync output (HSOUT)

Registers related to SYNC width adjustment of HSOUT

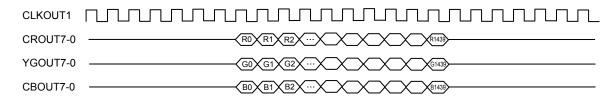
Name	Functions	Sub address	bit width
HSPLLSEL	This register selects the horizontal sync signal (SHOUT) in the H-lock PLL mode.	0x01	1
	0: HSIN		
	1: This is the signal that is fed back to the phase detector after dividing the VCO output of the PLL.		
	*: SYNC width adjustment for HSOUT must be turned on when HSPLLSEL is set to 1.		
CORREN	This register turns on and off the SYNC width adjustment for HSOUT.	0x27	1
	0: OFF, 1: ON		
CORRHSS	SYNC width adjustment register for HSOUT (to be described below)	0x2B	12
		0x2C	
CORRHSE	SYNC width adjustment register for HSOUT (to be described below)	0x2B	12
		0x2D	

When "1" is set for HSPLLSEL in the H lock PLL mode, the horizontal sync output signal is not HSIN but the signal that is fed back to the phase detector after dividing the VCO output of the PLL. The duty ratio of this signal is 50%, which means when it is to be used as the horizontal sync signal, the sync width must be determined. Furthermore, if "0" is set for HSPLLSEL, the horizontal sync input (HSIN) signal can be output in its original form even in the H lock PLL mode.

- *1: Clock is expressed in units of CLKOUT1.
- *2: A value equivalent to about three-fourths of one HSOUT period (640 or so with the NTSC system) must be set as the CORRHSE[11:0] value.


3) Offset adjustment of video output

Registers related to video output offset adjustment


Name	Functions	Sub address	bit width
ASYG	This register adjusts the offset for the Y/G video signal. It is used when the timing between	0x01	3
	the video signal and sync signals is off.		
	The Y/G video signal can be shifted by an amount equivalent to (ASYG + 1) locks.		
ASCRR	This register adjusts the offset for the CR/R video signal. It is used when the timing	0x02	3
	between the video signal and sync signals is off.		
	The CR/R video signal can be shifted by an amount equivalent to (ASCRR + 1) clocks.		
ASCBB	This register adjusts the offset for the CB/B video signal. It is used when the timing	0x02	3
	between the video signal and sync signals is off.		
	The CB/B video signal can be shifted by an amount equivalent to (ASVBBYG + 1) clocks.		
ASVS	This register adjusts the offset for the VSOUT video signal. It is used when the timing	0x03	3
	between the video signal and sync signals is off.		
	The vertical sync signal can be shifted by an amount equivalent to (ASVS + 1) clocks.		
ASHS	This register adjusts the offset for the HSOUT. It is used when the timing between the	0x03	3
	video signal and sync signals is off.		
	The horizontal sync signal can be shifted by an amount equivalent to (ASHS + 1) clocks.		

• Offset adjustment method

If the following fluctuations are present between the video outputs when ASYG[2:0] = 000b, ASCRR[2:0] = 000b and ASCBB[2:0] = 000b:

Then, by setting ASYG[2:0] = 010b, ASCRR[2:0] = 000b and ASCBB[2:0] = 011b, the video outputs can be aligned as shown below. The maximum shift width of the video signals is 8 clocks. If the ASVS[2:0] and ASHS[2:0] registers are used in line with the video signal shift, the sync signals (VSOUT and HSOUT) can also be shifted in line with the video signals. (DEOUT is also shifted following HSOUT.)

6. ADC

1) Analog clamp Registers related to analog clamp control

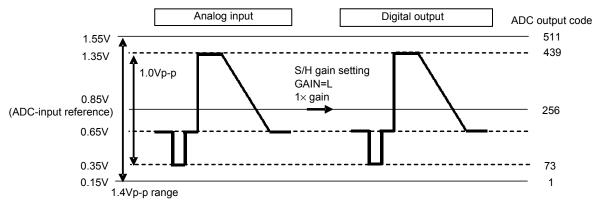
Name	Functions	Sub address	bit width
STBB	This register controls the band gap VREF circuit.	0x21	1
	0: Band gap VREF circuit enters standby mode.		
	1: Band gap VREF circuit enters normal operating mode.		
	* This must be set in line with the operation mode of ADC.		
STBB_Y	These registers control the AFE standby mode (Y: STBB_Y, B: STBB_B, R: STBB_R)	0x21	1
STBB_B	0: AFE standby mode	0x23	
STBB_R	1: AFE normal operating mode	0x25	
	* This must be set in line with the operation mode of ADC.		
SELFCLPSTBB_Y	These registers control self-clamp.	0x21	1
SELFCLPSTBB_B	(Y: SELFCLPSTBB_Y, B: SELFCLPSTBB_B, R: SELFCLPSTBB_R)	0x23	
SELFCLPSTBB_R	0: Self-clamp function is OFF	0x25	
	1: Self-clamp function is ON		
	*1: This is disabled when STBB_x=0 (self-clamp function is OFF).		
	*2: The clamp level is set to MAINCLPLVCNT_x[1:0].		
MAINCLPLVCNT_Y	These registers control the clamp level.	0x22	2
MAINCLPLVCNT_B	(Y: MAINCLPLVCNT_Y, B: MAINCLPLVCNT_B, R: MAINCLPLVCNT_R)	0x24	
MAINCLPLVCNT_R	00: 0.35V (sink tip clamp)	0x26	
	01: 0.50V (pedestal clamp)		
	10: 0.85V (center clamp)		
	11: Inhibited.		
	*: This is enabled when the self-clamp is ON.		
	(STBB_x=1, SELFCLPSTBB_x=1)		
HPFCLPON_Y	These registers control HPF center clamp.	0x22	1
HPFCLPON_B	(Y: HPFCLPON_Y, B: HPFCLPON_B, R: HPFCLPON_R)	0x24	
HPFCLPON_R	0: HPF center clamp is OFF	0x26	
	1: HPF center clamp is ON		
	*: This must be set OFF unless the center clamp is selected.		
	(MAINCLPLVCNT_x[1:0]=10).		
CLPLPFON_Y	These registers control clamp LPF.	0x22	1
CLPLPFON_B	(Y: CLPLPFON_Y, B: CLPLPFON_B, R: CLPLPFON_R)	0x24	
CLPLPFON_R	0: LPF function is OFF	0x26	
_	1: LPF function is ON		
	*: This is appropriate for rejecting high-frequency noises in a weak electric field		
	(cut-off frequency is 1MHz).		
	This must be set OFF when the video signals equivalent to HD specifications is input.		

• Analog clamp function

This function performs sync tip clamping and pedestal clamping to the video input selected by AINSEL. When the analog clamp function is not used, it can be placed in the standby status using the SELFCLPSTBB_x setting.

STBB_x	SELFCLPSTBB_x	State	Clamping Voltage
0	*	Analog clamp function OFF	-
1	0	Analog clamp function OFF	-
1	1	Analog clamp function ON	Subjected to the clamp level control

• Analog clamp level control


When the analog clamp function is ON, sync tip clamp, pedestal clamp and center clamp can be selected using the settings below.

\mathcal{C}		
MAINCLPLVCNT[1:0]	Clamp Level	State/Use
00	0.35V	Sync tip clamp
01	0.50V	Pedestal clamp
10	0.85V	Center clamp
11	-	Inhibited

The clamp levels applied to the YCbCr and RGB inputs are given below.

AFE CH	YCbCr	RGB
Υ	Sync chip clamp	Pedestal clamp
В	Center clamp	Pedestal clamp
R	Center clamp	Pedestal clamp

• Sync tip clamp specifications

The figures represent the set values set under ideal conditions.

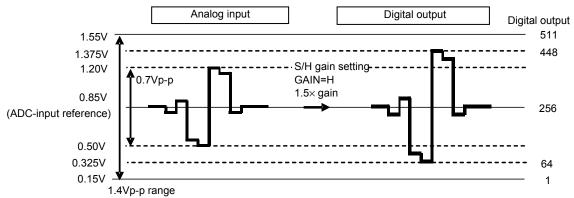
Clamp settings

Self-clamp setting

SELFCLPSTBB H: Self-clamp ON

Main clamp level setting

MAINCLPLVCNT [1:0] 00: Main clamp level set to 0.35V


HPF center clamp setting

HPFCLPON L: HPF clamp OFF

S/H gain setting

GAIN L: 1× gain

• Center clamp specifications

*The figures represent the set values set under ideal conditions.

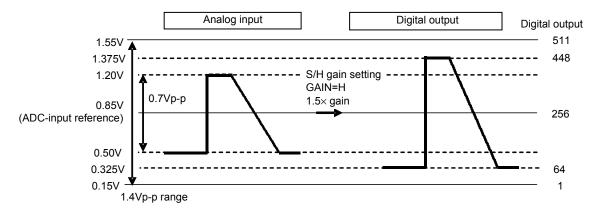
Clamp settings

Main clamp level setting

MAINCLPLVCNT [1:0] 10: Main clamp level set to 0.85V

Self-clamp setting

SELFCLPSTBB L: Self-clamp OFF


HPF center clamp setting

HPFCLPON H: HPF clamp ON

S/H gain setting

GAIN H: 1.5× gain

• Pedestal clamp specifications

^{*} The figures represent the set values set under ideal conditions.

Clamp settings

Self-clamp setting SELFCLPSTBB

H: Self-clamp ON

Main clamp level setting

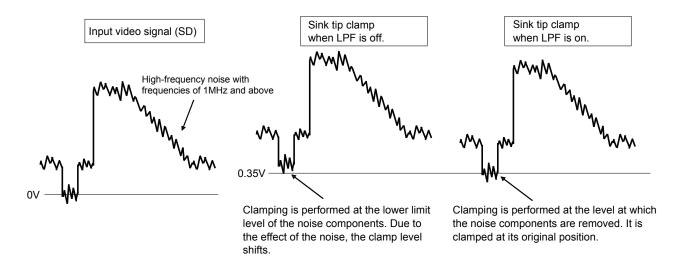
MAINCLPLVCNT [1:0]

01: Main clamp level set to 0.50V

HPF center clamp setting

HPFCLPON

L: HPF clamp OFF


S/H gain setting

GAIN

H: 1.5× gain

• Clamp LPF function

A primary LPF with a 1MHz cutoff frequency has been inserted in the stage before the self-clamp circuit as a measure to deal with the high-frequency noise that is present in weak electrical fields. The clamp LPF function is for minimizing shifts in the clamp levels of the self-clamp and sub-clamp when high-frequency noise components are present in the video signals. The LPF can be set to ON or OFF using the CLPLPFON setting. It must be set to ON when SD standard signals are input, and set to OFF when HD standard signals are input. The cutoff frequency of the LPF is 1MHz. Care must therefore be taken when the LPF is set to ON since the clamp level will drop when HD standard signals are input because it is not possible to track frequencies corresponding to the sync width.

2) ADC

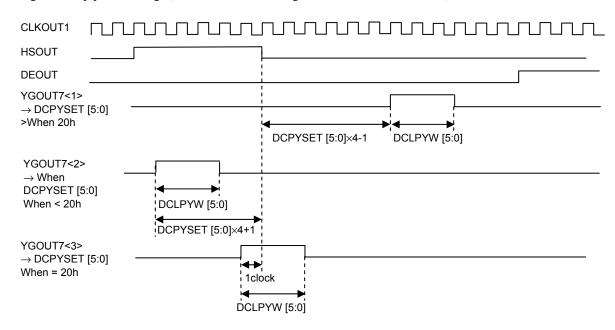
Registers related to ADC control

Name	Functions	Sub address	bit width
STBL_Y	These registers control the ADC standby mode (Y: STBL_Y, B: STBL_B, R: STBL_R).	0x21	4
STBL_B	0000: ADC standby mode	0x23	
STBL_R	1111: ADC normal operating mode	0x25	
	*1: Any other settings than above inhibited.		
	*2: This must be set in line with the operating mode of ADC.		
ICNT_Y	These registers control the internal bias current of ADC (Y: ICNT_Y, B: ICNT_B,	0x39	3
ICNT_B	R: ICNT_R).	0x3A	
ICNT_R	Bias current generating resistor values:	0x3B	
	000: 600 Ω (recommended)		
	001: 540Ω		
	010: 480Ω		
	011: 420Ω		
	100: 360Ω		
	101: 300Ω		
	110: 240Ω		
	111: 180Ω		

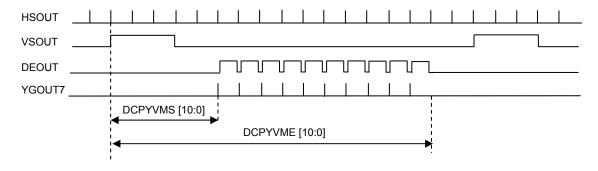
7. Digital Clamp

1) Digital clamp pulses

Registers related to digital clamp pulse control


Name	Functions	Sub address	bit width
OSEL	This register sets the digital clamp pulse output to ON or OFF.	0x2E	3
	It is used to adjust the position of the digital clamp pulses.		
	000: Normal operation		
	101: The Y digital clamp pulse is output from the YGOUT7 pin and the C digital clamp		
	pulse is output from the CBOUT7 pin.		
DCLPYON	These registers set the digital clamp pulse to ON and OFF	0x0A	1
DCLPCON	(Y: DCLPYON, C: DCLPCON).	0x0F	
	0: OFF, 1: ON		
DCPYSET	These registers set the digital clamp pulse positions (Y: DCPYSET, C: DCPCSET).	0x0A	6
DCPCSET	They are set in 4-clock increments using the trailing edge of Hsync as a reference.	0x0F	
	Setting range: -32 (00h) to +31 (3Fh), default value: +/-0 (20h)		
DCLPYW	These set the digital clamp pulse width. It can be set in 1 clock increments.	0x0B	6
DCLPCW	0 specifies a pulse width of 0.	0x10	
	(Y: DCLPYW, C: DCLPCW)		
DCLPYV	These registers set the disable function of the digital clamp pulses during the vertical	0x0B	1
DCLPCV	blanking period to ON or OFF.	0x10	
	(Y: DCLPYV, C: DCLPCV)		
	0: OFF, 1: ON		
DCPYVMS	These specify the start line at which the digital clamp pulses are enabled within 1V.	0x0C-0x0D	11
DCPCVMS	As a basic rule, the same values as the V-enable start line (VBLKS[10:0]) are set.	0x11-0x12	
DCPYVME	These specify the end line at which the digital clamp pulses are enabled within 1V.	0x0C-0x0E	11
DCPCVME	As a basic rule, the same values as the V-enable end line (VBLKS[10:0]) are set.	0x11-0x13	

Digital clamp pulse settings (how to output the clamp pulses)

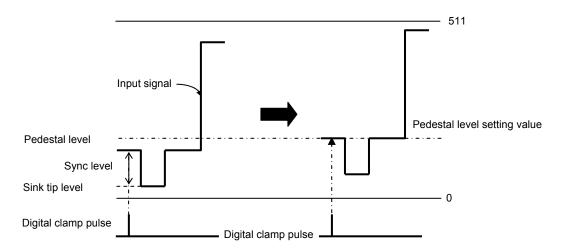

OSEL[2:0] *1	YGOUT7	CBOUT7	
101	Digital clamp pulse (Y)	Digital clamp pulse (C)	

^{*1:} The "000" setting must be used during normal operation.

• Digital clamp pulse settings (how to establish settings in the horizontal direction)

- *2: The digital clamp pulse positions must be set so that they come within the horizontal blanking period (DEOUT = L).
- *3: The digital clamp pulse (C) setting method is the same as that described above. However, DCPCSET[5:0] (0Fh, bit5-0) must be used for the pulse position setting, and DCLPCW[5:0] (10h, bit5-0) must be used for the pulse width setting.
- Digital clamp pulse settings (how to establish settings in the vertical direction)

- *4: By using the digital clamp pulse disable function (Y: DCLPYV = 1, C: DCLPCV = 1), the digital clamp pulse in the vertical blanking period can be set to OFF. The same values as the vertical enable settings (VBLKS[10:0], VBLKE[10:0]) must be used for the mask period settings (DCPYVMS[10:0], DCPYVME[10:0]).
- *5: The digital clamp pulse (C) setting method is the same as that described above. However, DCPCVMS[10:0] and DCPVME[10:0] must be used for the mask period settings.


2) Digital clamp

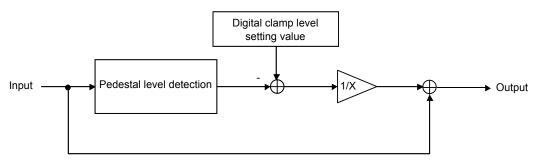
Registers related to digital clamp control

Name	Functions	Sub address	bit width
SELYCRGB	This register switches between the YCbCr input and RGB input.	0x14	1
	0: YCbCr, 1: RGB		
STDLEVY	YG digital clamp levels (SELYCRGB=0: Y, SELYCRGB=1: G)	0x14	6
	The 9-bit (0-511) YG video signals are clamped by the values determined assuming the pedestal		
	levels (Y: STDLEVY[5:0] + 118, G: STDLEVY[5:0]).		
	Setting range: Y (118-181), G (0-63)		
STDLEVCB	CBB digital clamp levels (SELYCRGB=0: CB, SELYCRGB=1: B)	0x15	6
	The 9-bit (0-511) CBB video signals are clamped by the value determined assuming the center level		
	(STDLEVCB[5:0] + 225) for CB and the pedestal level (STDLEVCB[5:0]) for B.		
	Setting range: CB (225-288), B (0-63)		
STDLEVCR	CRR digital clamp levels (SELYCRGB=0: CR, SELYCRGB=1: R)	0x16	6
	The 9-bit (0-511) CRR video signals are clamped by the value determined assuming the center level		
	(STDLEVCR[5:0] + 225) for CR and the pedestal level (STDLEVCR[5:0]) for R.		
	Setting range: CR (225-288), R (0-63)		
DCLINE	This sets the digital clamp update unit.	0x15	1
	0: 1V, 1: 1H (used for testing)		
FRAMEDC	[When the digital clamp update unit is 1V (DCLINE=0)]	0x17	5
	This register sets the number of update frames (FRAMEDC[4:0] + 1).		
	Setting range: 0-31 (1 to 32 frames)		
TCDIGCLP	This register sets the digital clamp time constant.	0x17	3
	000: 1/1 001: 1/2		
	010: 1/4 011: 1/8		
	100: 1/16 101: 1/32		
	110: 1/64 111: 1/128		

• Digital clamp specifications

The 9-bit (0-511) video signals output from the ADC are clamped at the set digital clamp pulse position to the set digital clamp level.

The digital clamp level setting values are given below.


Y=118+STDLEVY[5:0]

Cb/Cr=225+(STDLEVCB[5:0]/STDLEVCR[5:0])

R, G, B=STDLEVY[5:0]/STDLEVCB[5:0]/STDLEVCR[5:0]

• Concerning the time constant setting

A difference between the pedestal level of the 9-bit (0-511) video signals and set digital clamp level is obtained through digital clamp processing as shown in the figure below. The result of multiplying this difference by the 1/X time constant is added to the input signals and output. In this way, the level is changed gradually to the set digital clamp level. The time constant is set using TCDIGCLP[2:0].

8. Gain

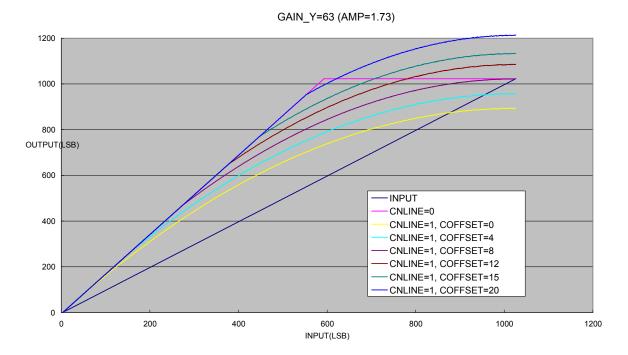

1) Gain adjustments

Registers related to gain adjustments

Name	Functions	Sub address	bit width
SELYCRGB	This register switches between YCbCr input and RGB input.	0x14	1
	0: YCbCr, 1: RGB		
SYNCON	This register turns ON and OFF the function to adjust the gain by cutting off the sync	0x1B	1
	component of the digitally clamped Y video signal for YCbCr input.		
	This must be set to 0 for the RGB input (SELYCRGB=1).		
	0: ON, 1: OFF		
CNLINE	This register sets the nonlinear gain adjustment to ON or OFF.	0x19	1
	0: OFF (linear gain adjustment)		
	1: ON (nonlinear gain adjustment)		
COFFSET	This register adjusts the nonlinear gain region when the nonlinear gain adjustment is ON	0x1C	5
	(CNLINE=1).		
GAINY	Linear gain adjustment (YG)	0x19	7
	The multipliers for linear gain adjustment are given below.		
	Y (SELYCRGB=0): (32+GAINY[6:0])/64		
	G (SELYCRGB=1): (48+GAINY[6:0])/64		
GAINCB	Linear gain adjustment (CBB)	0x1A	7
	The multiplier is set to (48+GAINCB[6:0])/64 for linear gain adjustment.		
GAINCR	Linear gain adjustment (CRR)	0x1B	7
	The multiplier is set to (48+GAINCR[6:0])/64 for linear gain adjustment.		

• Gain adjustment specifications

The digitally clamped 9-bit video signals are converted into 8-bit video signals as shown in the figure below. In this case, the digital clamp level is shifted to the LSB of the 8 bits, and gain is adjusted in such a way that the components (video signals) above the digital clamp level fit in the 8-bit range.

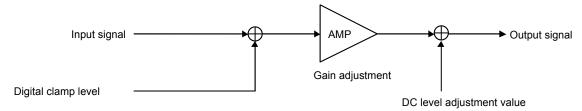


• Non-linear gain adjustment

When CNLINE = 1, the output obtained in response to the input near the saturation region is made non-linear. When the non-linear gain adjustment parameter (CONPARA), obtained from the formula below, is less than the multiplier (RGB: $(32 + \text{GAIN}_x[6:0])/64$, YCbCr: $(48 + 12A_\text{GAIN}_x[6:0])/64$) that is used when the non-linear gain is adjusted, the input is multiplied by the non-linear gain adjustment parameter, resulting in a non-linear output. The non-linear start position and maximum non-linear output value can be adjusted using COFFSET[4:0].

$$CONPARA = (1023 - 9\text{-bit video signals}) \times (64 + COFFSET[4:0])/64$$

The figure below shows the gain adjustment output when the input is Y and $GAIN_Y[6:0] = 63$.



2) DC level adjustment

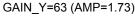
Registers related to DC level adjustment

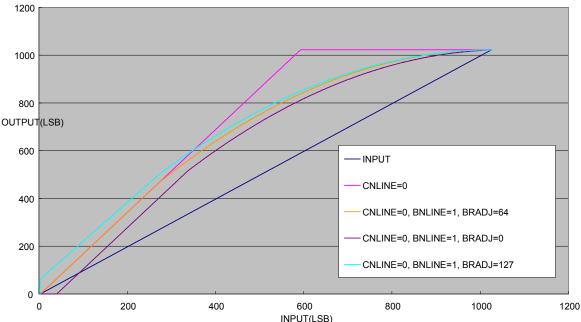
Name	Functions	Sub address	bit width
SELYCRGB	This register switches between the YCbCr input and RGB input.	0x14	1
	0: YCbCr, 1: RGB		
BRADJ	This register adjusts the DC level. When the gain adjustment + DC level adjustment	0x1D	7
	output is linear (BNLINE = 0), BRADJ is offset from the video signals produced after the		
	gain adjustment (the Y signal is further offset by 64).		
	Setting range: -64 to +63, default value: ±0 (40h)		
CNLINE	This register sets the applicable non-linear gain adjustment,	0x19	1
	when the gain adjustment + DC level adjustment is used (BRADJ<40h), to ON or OFF.		
	0: OFF (linear gain adjustment)		
	1: ON (non-linear gain adjustment)		
BNLINE	This register sets the applicable non-linear gain adjustment,	0x1A	1
	when the gain adjustment + DC level adjustment is used (BRADJ>40h), to ON or OFF.		
	0: OFF (linear gain adjustment)		
	1: ON (nonlinear gain adjustment)		
COFFSET	This register adjusts the non-linear gain region when the non-linear gain adjustment is	0x1C	5
	ON (BNLINE = 1)		

• DC level adjustment specifications

The DC level is adjusted by adding BRADJ[6:0] to the Y signal or RGB signals subjected to gain adjustment processing.

• Non-linear gain adjustment + DC level adjustment


When CNLINE = 1 and BRADJ[6:0]<0x40 (minus), the output corresponding to the input near the saturation region is made non-linear. When the non-linear gain adjustment parameter (CONPARA) obtained from the formula below is less than the multiplier (RGB: (32 + GAIN_x[6:0])/64, YCbCr: (48 + GAIN_x[6:0])/64) that is used when the linear gain is adjusted, the input is multiplied by the non-linear gain adjustment parameter, resulting in a non-linear output. The non-linear start position and maximum non-linear output value can be adjusted using COFFSET[4:0].


$$CONPARA = (1023 - 9 - bit video signal) \times (64 + COFFSET[4:0])/64 - BRADJ[6:0]/2$$

Similarly, when BNLINE = 1 and BRADJ[6:0]>0x40 (plus), the output corresponding to the input near the saturation region is made non-linear. When the DC adjustment parameter (BRPARA), obtained from the formula below, is less than BRADJ[6:0], the extent to which the output is to be non-linear is adjusted by adding the DC adjustment parameter to the Y signal or RGB signals subjected to non-linear gain adjustment processing.

BRPARA =
$$(127 - \text{non-linear gain output/16}) \times (64 + \text{COFFSET}[4:0])/64$$

The figure below shows the output obtained when the gain adjustment and DC level adjustment have been performed (when $GAIN_Y[6:0] = 63$, COFFSET[4:0] = 8).

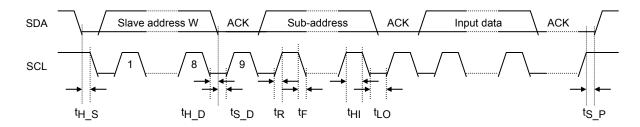
9. External interface

I²C: 100kHz mode is supported. The slave address can be selected using the pin settings.

Slave address: 0x98, 0x9A

1) Control specifications

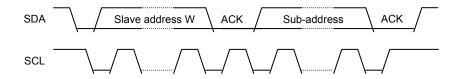
Slave operations in the standard mode (100kHz) are supported.

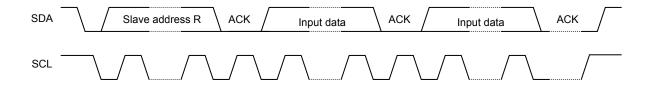

These must be used for setting the internal registers and setting the internal status output and γ correction characteristics. The slave addresses are listed in the table below. Two addresses can be selected using the I²CSEL pin.

Slave address: $(I^2CSEL=0)$ 1 0 0 1 1 0 0 R/W Slave address: $(I^2CSEL=1)$ 1 0 0 1 1 0 1 R/W

2) Control and timing specifications

(1) Receive mode


As shown below, the slave address W, sub-address and input data must be set in this sequence after the start condition. The data of each sub-address can be input in auto address increments consecutively from the data of the sub-address specified. The data must be set consecutively with ACK between one data and the next. The stop condition must be set last.


Parameter	Symbol	min	max	unit
SCL clock frequency	fSCL	0	100	kHz
Start condition hold time	tH_S	4.0		μs
Data hold time	tH_D	0		μs
Data setup time	tS_D	250		ns
SDA and SCL rise time	tR		1000	ns
SDA and SCL fall time	tF		300	ns
SCL high level hold time	tнı	4.0		μs
SCL low level hold time	tLO	4.7		μs
Stop condition setup time	tS_P	4.7		μs

(2) Send mode

As shown below, slave address W and the sub-address must be set after the start condition. The stop condition must be set last.

Slave address R must then be set after the start condition. The data of each sub-address is output in auto address increments consecutively from the data of the specified sub-address. The stop condition must be set last.

(3) Register settings

The registers can be broadly divided into receive and send registers. Receive registers are setting registers for internal control; send registers are for outputting the internal statuses to an external destination. The receive register settings can also be output to an external destination.

3) Register map										
S	ub	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial
Add	Iress	(MSB)	Dito	bito			DILE	Ditt	(LSB)	Value
		T			Clock I/O co		<u> </u>			
00H	R/W	CLKOUT2INV	CLKOUT1INV	CLKHSYIINV	CLKINININV	CLKADCIINV		CLKSEL[2:0]		08h
0411	DAM	011/01/701/7		_	I/O control/offs	1	ontrol	101/070 01		1
01H	R/W	CLKOUTINV	-	-	-	HSPLLSEL		ASYG[2:0]		88h
02H	R/W	VSOUTINV		ASCRR[2:0]		VSINV		ASCBB[2:0]		08h
03H	R/W	HOUTINV		ASVS[2:0]		HSINV		ASHS[2:0]		08h
0.411	H/V enable control								001	
04H	R/W		HBLKS[11: 8] HBLKE[11: 8]						03h	
05H	R/W					(S[7:0]				7Ah
06H	R/W		HBLKE[7:0]					4Ah		
07H	R/W	-		VBLKS[10: 8]		-		VBLKE[10: 8]		01h
08H	R/W				VBLK					11h
09H	R/W					E[7:0]				02h
					Digital clar	•				
0AH	R/W	DCLPYON	-				SET[5:0]			A7h
0BH	R/W	DCLPYV	DIGCLPON	200000000000000000000000000000000000000		DCLP\	/W[5:0]			C4h
0CH	R/W	-	L	DCPYVMS[10: 8	-	-	L	OCPYVME[10: 8		01h
0DH	R/W					'MS[7:0]				11h
0EH	R/W				DCPYV	'ME[7:0]				02h
0FH	R/W	DCLPCON	-				SET[5:0]			A7h
10H	R/W	DCLPCV	-			DCLP(CW[5:0]			84h
11H	R/W	-	L	OCPCVMS[10: 8	-	-	L	CPCVME[10: 8	<u> </u>	01h
12H	R/W					/MS[7:0]				11h
13H	R/W				DCPCV	'ME[7:0]				02h
14H	R/W	SELYCRGB	-				VY[5:0]			A0h
15H	R/W	DCLINE	-			STDLE	/CB[5:0]			20h
16H	R/W	EXSYNCON	-				/CR[5:0]			20h
17H	R/W		TCDIGCLP[2:0]				FRAMEDC[4:0]			40h
18H	R/W	-	-				-			20h
	I	1	T	-	Sub-contrast/bri	ightness				1
19H	R/W	CNLINE				GAINY[6:0]				20h
1AH	R/W	BNLINE				GAINCB[6:0]				20h
1BH	R/W	SYNCON			T	GAINCR[6:0]				20h
1CH	R/W	-	-	-			COFFSET[4:0]			08h
1DH	R/W	-				BRADJ[6:0]				40h
1EH	R/W	-				-				40h
1FH	R/W		-		-		-	-	-	00h
20H	R/W					-				00h
	Г	1	T		AFE/AD0	2				T
21H	R/W	STBB	-	SELFCLPSTBB_Y	STBB_Y		STBL_	_Y[3:0]		BFh
22H	R/W	AINSEL	-	MAINCLPL\	/CNT_Y[1:0]	-	HPFCLPON_Y	CLPLPFON_Y	GAIN_Y	12h
23H	R/W	-	-	SELFCLPSTBB_B	STBB_B		STBL_	_B[3:0]		3Fh
24H	R/W	-	-	MAINCLPL\	/CNT_B[1:0]	-	HPFCLPON_B	CLPLPFON_B	GAIN_B	12h
25H	R/W	-	-	SELFCLPSTBB_R	STBB_R		STBL_	_R[3:0]		3Fh
26H	R/W	-	-	MAINCLPL\	/CNT_R[1:0]	-	HPFCLPON_R	CLPLPFON_R	GAIN_R	12h

Continued on next page.

	ub	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial
Add	ress	(MSB)			lPLL				(LSB)	Value
27H	R/W	CORREN			PLL	DLL CAINIO.01		PLLCTL2	PLLCTL1	C0h
27H 28H	R/W	HPLDIV15	HPLDIV14	HPLDIV13	HPLDIV12	PLLGAIN[2:0] HPLDIV11	HPLDIV10	HPLDIV9	HPLDIV8	73h
29H	R/W	HPLDIV15	HPLDIV14	HPLDIV13	HPLDIV12	HPLDIV11	HPLDIV10	HPLDIV9	HPLDIV0	58h
29H	R/W	HPLDIV1	1	DAST[3:0]	HPLDIV4	HPLDIV3		DRG[3:0]	HPLDIVU	AAh
2BH	R/W			SS[11: 8]				SE[11: 8]		02h
2CH	R/W		CORRI	33[11. 0]	CORRI	 - 	CORRI	3⊑[11. 0]		35h
2DH	R/W					HSE[7:0]				1Ch
2EH	R/W		OSEL[2:0]		-	135[7.0]			_	01h
2FH	R/W	-	- USEL[2.0]		-		<u>-</u>	_	-	06h
30H	R/W	-	-		<u>-</u>	_	-	-	-	00h
31H	R/W	-	_		-	<u>-</u>				80h
32H	R/W								08h	
33H	R/W	-	_	<u>-</u>						20h
34H	R	-	_		_					00h
35H	R	-	-	-	_		_		-	00h
36H	R					<u>-</u>				00h
37H	R/W		_				_			01h
38H	R/W	-	-	_	_		-		_	00h
39H	R/W	_	_		<u> </u> -	_		ICNT_Y[2:0]		0Ch
3AH	R/W	-	_			_		ICNT_B[2:0]		0Ch
3BH	R/W	-	_			_		ICNT_B[2:0]		0Ch
3CH	R/W	-	_	_	-	_	-	-	-	00h
3DH	R/W	-	_	_	-	-	-	-	-	00h
3EH	R/W	_	-	_	-	-	-	-	=	00h
3FH	R/W	_	_	_	_	_	_	_	-	92h
	1	<u>l</u>	<u>l</u>	<u>l</u>	PLL and o		<u>l</u>	<u>l</u>		
40H	R/W	-	_				DIV[5:0]			1Fh
FEH	R/W	-	_	_	_	-	-	_	_	80h

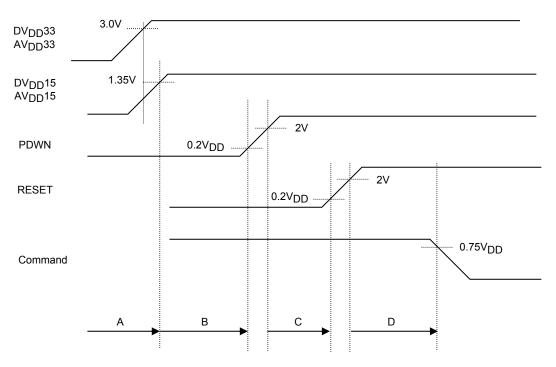
PDOWN

Complete power-down can be controlled using the PDWN pin. ADC, PLL and other items can be powered down individually by means of register settings. This makes it possible to limit the power consumption as required.

Internal states based on the PDWN pin setting

PDWN	PDWN ADC PLL		Logic	Communication	Remarks
0	PowerDown	PowerDown	Clocks stopped	Stopped	Registers reset state
1	Operating	Operating	Operating	Operating	

Power Down control by controlling registers


Item	
ADC	Power-down can be controlled using dedicated registers. See below for the relevant registers.
PLL	Power-down can be controlled using dedicated registers. See below for the relevant registers.
Logic	External input is selected and the external clock is stopped.
	Similarly, the clock is stopped by selecting the PLL mode and power down the PLL circuit.
Output pin	Output-enable (Hi-Z) can be set by using the dedicated registers.
Communication	Cannot be stopped.

Name	Functions	Sub address	bit width
STBL_Y	These registers control the ADC standby mode (Y: STBL_Y, B: STBL_B, R: STBL_R).	0x21	4
STBL_B	0000: ADC standby mode	0x23	
STBL_R	1111: ADC normal operating mode	0x25	
	*1: Any other setting than above inhibited.		
	*2: These must be set in accordance with the operating mode of AEC.		
STBB	This register controls the band gap VREF circuit.	0x21	1
	0: Places the band gap VREF circuit into the standby mode.		
	1: Places the band gap VREF circuit into the normal operating mode.		
	*: This must be set in accordance with the operating mode of ADC.		
STBB_Y	These registers control the AFE standby mode (Y: STBB_Y, B: STBB_B, R: STBB_R).	0x21	1
STBB_B	0: AFE standby mode	0x23	
STBB_R	1: AFE normal operating mode	0x25	
	*: These must be set in accordance with the operating mode of ADC.		
PLLCTL2	This register controls the H-lock PLL power down mode	0x27	1
	0: Normal operating mode		
	1: H-lock PLL power off		

Other (usage precautions)

1. Precaution when turning on the power

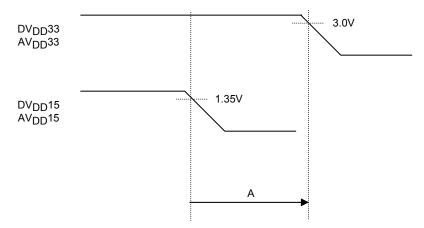
As shown in the figure below, start the transfer of the I^2C bus command after factoring in the power-on time (A), PDWN operation time (B), RESET operation time (C) and command transfer start time (D).

A: Power-on time

This is the time taken from power-on to when the $^*V_{DD}15$ operating supply voltage has reached the lowest level (1.35V) and operation has stabilized. The power-on-time depends on the characteristics of the power ICs and other components, so it must be checked separately. With regard to $^*V_{DD}33$ and $^*V_{DD}15$, $^*V_{DD}15$ must be turned on after $^*V_{DD}33$ has turned on.

B: PDWN operation time

This is the time during which the "L" level must be applied continuously for a period of 10ms or more to the PDWN pin after the lowest level (1.35V) of the *V_{DD}15 operating supply voltage has been reached and operation has stabilized.


C: RESET operation time

This is the time during which the "L" level must be applied continuously for a period of 10ms or more to the RESET pin after the PDWN is released ("H" level).

D: Command transfer start time

At least an interval of 10ms is required from the time the RESET pin is released ("H" level) to the start of command transfer.

2. Precaution when turning off the power

As a basic rule, power-off must be performed in the reverse sequence of power-on. However, no problems are posed if there is no wait time.

A: Power-off time

This is the time it takes to reach the I_O supply voltage and for operation to stabilize from the lowest level (1.35V) of the $^*V_{DD}15$ operating supply voltage. With regard to $^*V_{DD}33$ and $^*V_{DD}15$, $^*V_{DD}33$ must be turned off after $^*V_{DD}15$ has been turned off or they must be turned off at the same time.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of March, 2010. Specifications and information herein are subject to change without notice.