mos miegarate circuir
 μ PD78042F, 78043F, 78044F, 78045F

8-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD78042F, μ PD78043F, μ PD78044F, and μ PD78045F are 8-bit single-chip microcomputers that incorporate many hardware peripherals such as an FIP ${ }^{\circledR}$ controller/driver, 8-bit resolution A/D converter, timer, serial interface, and interrupt controller.

The one-time PROM and EPROM models that can operate in the same voltage range as that of masked ROM models, and various development tools are provided.

The functions of these microcomputers are described in detail in the following User's Manual. Be sure to read this manual when you design a system using any of these microcomputers.
μ PD78044F Sub-Series User's Manual : U10908E
78K/0 Series User's Manual, Instruction: IEU-1372

FEATURES

- High-capacity ROM and RAM

Product name	Program memory (ROM)	Data memory		

- Wide range of instruction execution time - from
high-speed $(0.4 \mu \mathrm{~s})$ to ultra low-speed ($122 \mu \mathrm{~s}$)
- I/O ports: 68
- FIP controller/driver: total display outputs: 34
- 8-bit resolution A/D converter: 8 channels
- Serial interface: 2 channels
- Timer: 6 channels
- Power supply voltage: VDD $=2.7$ to 5.5 V

APPLICATIONS

CD players, cassete tape recorders, tuners, minicomponent stereos, VCRs, microwave ovens, ECRs, etc.

ORDERING INFORMATION

Part number	Package
μ PD78042FGF- $x \times x$-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78043FGF- $x \times x$-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78044FGF- $-\times x$-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78045FGF- $\times x \times$-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$

Remark $X X X$ indicates ROM code number.

78K/0 SERIES PRODUCT DEVELOPMENT

The $78 \mathrm{~K} / 0$ series products were developed as shown below. The sub-series names are indicated in frames.

The table below shows the main differences between subseries.

FUNCTIONAL OUTLINE

Item Product name		$\mu \mathrm{PD} 78042 \mathrm{~F}$	$\mu \mathrm{PD} 78043 \mathrm{~F}$	$\mu \mathrm{PD} 78044 \mathrm{~F}$	$\mu \mathrm{PD} 78045 \mathrm{~F}$
Internal memory	ROM	16K bytes	24K bytes	32K bytes	40K bytes
	Internal high-speed RAM	512 bytes		1024 bytes	
	Buffer RAM	64 bytes			
	FIP display RAM	48 bytes			
General registers		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Instruction		Variable instruction execution time			
	For main system clock	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (at 5.0 MHz)			
	For subsystem clock	$122 \mu \mathrm{~s}$ (at 32.768 kHz)			
Instruction set		- Multiplication/division (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit (set, reset, test, Boolean algebra)			
I/O ports (including those multiplexed with FIP pins)		- CMOS input $: 2$ lines - CMOS I/O $: 27$ lines - N-ch open-drain $: 5$ lines - P-ch open-drain I/O $: 16$ lines - P-ch open-drain output $: 18$ lines			
FIP controller/driver		Total $: 34$ lines - Segments $: 9$ to 24 lines - Digits $: 2$ to 16 lines			
A/D converter		- 8-bit resolution $\times 8$ channels - Power supply voltage: AV DD $=4.0$ to 5.5 V			
Serial interface		- 3-wire serial I/O/SBI/2-wire serial I/O selectable modes: 1 channel - 3-wire serial I/O mode (with automatic transmission/ reception function of up to 64 bytes) : 1 channel			
Timer		- 16 -bit timer/event counter $: 1$ channel - 8-bit timer/event counter $: 2$ channels - Watch timer $: 1$ channel - Watchdog timer $: 1$ channel - 6 bit up/down counter $: 1$ channel			
Timer output		3 lines (one for 14-bit PWM output)			
Clock output		$19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}$ (Main system clock: at 5.0 MHz) 32.768 kHz (Subsystem clock: at 32.768 kHz)			
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}$ (Main system clock: at 5.0 MHz)			
Vectored interrupt	Maskable interrupt	Internal 10 lines, external 4 lines			
	Non-maskable interrupt	Internal 1 line			
	Software interrupt	1 line			
Text input		Internal 1 line			
Power supply voltage		$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V			
Package		80-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)			

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 6
2. BLOCK DIAGRAM 8
3. PINS FUNCTIONS 9
3.1 PORT PINS 9
3.2 PINS OTHER THAN PORT PINS 11
3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS. 13
4. MEMORY SPACE 16
5. PERIPHERAL HARDWARE FUNCTIONS 17
5.1 PORTS 17
5.2 CLOCK GENERATOR CIRCUIT 18
5.3 TIMER/EVENT COUNTER 18
5.4 CLOCK OUTPUT CONTROL CIRCUIT 21
5.5 BUZZER OUTPUT CONTROL CIRCUIT 21
5.6 A/D CONVERTER 22
5.7 SERIAL INTERFACE 22
5.8 FIP CONTROLLER/DRIVER 24
6. INTERRUPT FUNCTION AND TEST FUNCTION 26
6.1 INTERRUPT FUNCTION 26
6.2 TEST FUNCTION 29
7. STANDBY FUNCTION 30
8. RESET FUNCTION 30
9. INSTRUCTION SET 31
10. ELECTRICAL SPECIFICATIONS 34
11. CHARACTERISTIC CURVE (REFERENCE VALUE) 58
12. PACKAGE DRAWING 63
13. RECOMMENDED SOLDERING CONDITIONS 64
APPENDIX A DEVELOPMENT TOOLS 65
APPENDIX B RELATED DOCUMENTS 67

1. PIN CONFIGURATION (TOP VIEW)

- 80 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
μ PD78042FGF-××x-3B9, μ PD78043FGF-××x-3B9
μ PD78044FGF-xxx-3B9, μ PD78045FGF-xxx-3B9

Cautions 1. Connect the IC (Internally Connected) pins directly to the Vss.
2. Connect the AVdd pin to the Vdd pin.
3. Connect the AVss pin to the Vss pin.

P00-P04	: Port 0
P10-P17	: Port 1
P20-P27	: Port 2
P30-P37	: Port 3
P70-P74	: Port 7
P80, P81	: Port 8
P90-P97	: Port 9
P100-P107	: Port 10
P110-P117	: Port 11
P120-P127	: Port 12
INTP0-INTP3 : Interrupt from peripherals	
TI0-TI2	: Timer input
TO0-TO2	: Timer output
CI0	: Counter input
SB0, SB1	: Serial bus
SI0, SI1	: Serial input
SO0, SO1	: Serial output

$\overline{\text { SCK0 }}$, $\overline{\text { SCK } 1}$	Serial clock
PCL	Programmable clock
BUZ	Buzzer clock
STB	Strobe
BUSY	Busy
FIP0-FIP33	Fluorescent indicator panel
Vload	Negative power supply
X1, X2	: Crystal (main system clock)
XT1, XT2	: Crystal (subsystem clock)
RESET	Reset
ANIO-ANI7	Analog input
AVdd	: Analog power supply
AVss	: Analog ground
AVref	: Analog reference voltage
Vdd	: Power supply
Vss	: Ground
IC	: Internally connected

2. BLOCK DIAGRAM

Remark The capacities of the internal ROM and RAM differ depending on the product.

3. PINS FUNCTIONS

3.1 PORT PINS (1/2)

Pin name	I/O		Function	On reset	Shared by:	
P00	Input	Port 0 5-bit I/O port	Input only	Input	INTPO/TIO	
P01	I/O		Can be specified for input or output in 1-bit units. When used as an input port pin, a built-in pull-up resistor can be used by software.	Input	INTP1	
P02					INTP2	
P03					INTP3/CIO	
P04 ${ }^{\text {Note }} 1$	Input		Input only	Input	XT1	
P10-P17	I/O	Port 1 8-bit I/O port Can be specified for input or output in 1-bit units. When used as an input port pin, a built-in pull-up resistor can be used by software. Note 2		Input	ANIO-ANI7	
P20	I/O	Port 2 8-bit I/O port Can be specified for input or output in 1-bit units. When used as an input port pin, a built-in pull-up resistor can be used by software.		Input	SI1	
P21				SO1		
P22				$\overline{\text { SCK1 }}$		
P23				STB		
P24				BUSY		
P25				SIO/SB0		
P26				SO0/SB1		
P27				SCK0		
P30	I/O	Port 3 8-bit I/O port Can be specified for input or output in 1-bit units. Can directly drive LEDs. When used as an input port pin, a built-in pull-up resistor can be used by software. A pull-down resistor can be connected in 1-bit units by the mask option.			Input	TOO
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		

Notes 1. When the P04/XT1 pins is used as an input port pin, bit 6 (FRC) of the processor clock control register (PCC) must be set to 1. At this time, do not use the feedback resistor of the subsystem clock oscillator circuit.
2. When the P10/ANI0 through P17/ANI7 pins are used as the analog input lines of the A/D converter, be sure to place the port 1 in the input mode. In this case, the built-in pull-up resistors are automatically unused.

3.1 PORT PINS (2/2)

Pin name	I/O	Function	On reset	Shared by:
P70-P74	I/O	Port 7 5-bit N-ch open-drain I/O port Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-up resistor can be connected in 1-bit units by the mask option.	Input	-
P80, P81	Output	Port 8 2-bit P-ch open-drain high-voltage output port. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLoad or V_{ss} is connected can be specified in bit units).	Output	FIP0, FIP1
P90-P97	Output	Port 9 8 -bit P -ch open-drain high-voltage output port. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLoad or Vss is connected can be specified in 4-bit units).	Output	FIP2-FIP9
P100-P107	Output	Port 10 8-bit P-ch open-drain high-voltage output port. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLoad or $\mathrm{V}_{\text {ss }}$ is connected can be specified in 4-bit units).	Output	FIP10-FIP17
P110-P117	I/O	Port 11 8-bit P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit units. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether VLoad or Vss is connected can be specified in 4-bit units).	Input	FIP18-FIP25
P120-P127	I/O	Port 12 8-bit P-ch open-drain high-voltage I/O port Can be specified for input or output in 1 -bit units. Can directly drive LEDs. A pull-down resistor can be connected in 1-bit units by the mask option (whether Vload or Vss is connected can be specified in 4-bit units).	Input	FIP26-FIP33

3.2 PINS OTHER THAN PORT PINS (1/2)

Pin name	1/O	Function	On reset	Shared by:
INTPO	Input	Valid edge (rising, falling, or both rising and falling edges) can be specified. External interrupt input	Input	P00/TIO
INTP1				P01
INTP2				P02
INTP3		Falling edge-active external interrupt input	Input	P03/CI0
SIO	Input	Serial data input lines of serial interface	Input	P25/SB0
SI1				P20
SO0	Output	Serial data output lines of serial interface	Input	P26/SB1
SO1				P21
SB0	I/O	Serial data I/O lines of serial interface	Input	P25/SI0
SB1				P26/SO0
$\overline{\text { SCK0 }}$	1/O	Serial clock I/O lines of serial interface	Input	P27
$\overline{\text { SCK1 }}$				P22
STB	Output	Automatic transmission/reception strobe output line of serial interface	Input	P23
BUSY	Input	Automatic transmission/reception busy input line of serial interface	Input	P24
TIO	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2		External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer output (multiplexed with 14-bit PWM output)	Input	P30
TO1		8-bit timer output		P31
TO2				P32
CIO	Input	Clock input to 6-bit up/down counter	Input	P03/INTP3
PCL	Output	Clock output (for trimming main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
FIP0, FIP1	Output	High-voltage, high-current digit/segment output of FIP controller/driver	Output	P80, P81
FIP2-FIP9				P90-P97
FIP10-FIP15	Output	High-voltage, high-current digit/segment output of FIP controller/driver	Output	P100-P105
FIP16, FIP17	Output	High-voltage segment output of FIP controller/driver	Output	P106, P107
FIP18-FIP25			Input	P110-P117
FIP26-FIP33				P120-P127
Vload	-	Connects pull-down resistor to FIP controller/driver	-	-

3.2 PINS OTHER THAN PORT PINS (2/2)

Pin name	1/O	Function	On reset	Shared by:
ANIO-ANI7	Input	A/D converter analog input lines	Input	P10-P17
$\mathrm{AV}_{\text {ref }}$	Input	A/D converter reference voltage input line	-	-
AV ${ }_{\text {do }}$	-	Analog power supply to A/D converter. Connected to the VDD pin.	-	-
AVss	-	A/D converter ground line. Connected to the Vss pin.	-	-
$\overline{\text { RESET }}$	Input	System reset input	-	-
X1	Input	Connect crystal for main system clock oscillation	-	-
X2	-		-	-
XT1	Input	Connect crystal for subsystem clock oscillation	Input	P04
XT2	-		-	-
VDD	-	Positive power supply	-	-
Vss	-	Ground potential	-	-
IC	-	Internal connection. Connected directly to the Vss pin.	-	-

3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS

Table 3-1 shows the I/O circuit type of each pin and the processing of unused pins.
For the configuration of the I/O circuit of each type, refer to Fig. 3-1.

Table 3-1 I/O Circuit Type

Pin name	I/O Circuit type	I/O	Recommended connections when unused
P00/INTP0/TIO	2	Input	Connected to Vss.
P01/INTP1	8-A	I/O	Individually connected to Vss with a resistor.
P02/INTP2			
P03/INTP3/CI0			
P04/XT1	16	Input	Connected to Vdd or Vss.
P10/ANI0-P17/ANI7	11	I/O	Individually connected to $\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ with a resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-C		
P31/TO1			
P32/TO2			
P33/TI1	8-B		
P34/TI2			
P35/PCL	5-C		
P36/BUZ			
P37			
P70-P74	13-B		
P80/FIP0, P81/FIP1	14-A	Output	Open
P90/FIP2-P97/FIP9			
P100/FIP10-P107/FIP17			
P110/FIP18-P117/FIP25	15-C	I/O	Individually connected to VDD or Vss with a resistor.
P120/FIP26-P127/FIP33			
RESET	2	Input	-
XT2	16	-	Open
AVref	-		Connected to Vss.
AVDD			Connected to Vid.
AVss			Connected to Vss.
Vload			
IC			Connected directly to Vss.

Fig. 3-1 Pin I/O Circuits (1/2)
Type 2

Fig. 3-1 Pin I/O Circuits (2/2)

4. MEMORY SPACE

Fig. 4-1 shows the memory map for μ PD78042F, μ PD78043F, μ PD78044F, and μ PD78045F.

Fig. 4-1 Memory Map

Note The internal ROM and internal high-speed RAM capacities vary depending on the product. (See the table below.)

Product name	Last Address of Internal ROM nnnnH	First address of internal high-speed RAM mmmmH
μ PD78042F	3FFFH	FDOOH
μ PD78043F	5FFFH	
μ PD78044F	7FFFH	FBOOH
μ PD78045F	9FFFH	

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

I/O ports are classified into the following five types:

- CMOS input (P00, P04) :2
- CMOS input/output (P01-P03, ports 1-3) :27
- N-ch open-drain input/output (port 7) :5
- P-ch open-drain output (ports 8-10) : 18
- P-ch open-drain input/output (ports 11 and 12) : 16

Total :68
Table 5-1 Port Function

Product	Pin	Function
Port 0	P00, P04	Input-only port
	P01-P03	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.
Port 1	P10-P17	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.
Port 2	P20-P27	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software.
Port 3	P30-P37	I/O port. Can be specified for input or output in 1-bit units. When used as input port, internal pull-up resistor can be connected through software. Pull-down resistor can be connected in 1-bit units by the mask option. Can directly drive LED.
Port 7	P70-P74	N -ch open-drain I/O port. Can be specified for input or output in 1-bit units. Pull-up resistor can be connected in 1-bit units by the mask option. Can directly drive LED.
Port 8	P80, P81	P-ch open-drain output port with high withstand voltage. Pull-down resistor can be connected in 2-bit units by the mask option (connection to VLoad or Vss can be specified in 2-bit units). Can directly drive LED.
Port 9	P90-P97	P-ch open-drain output port with high withstand voltage. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLoad or Vss can be specified in 4-bit units). Can directly drive LED.
Port 10	P100-P107	P-ch open-drain output port with high withstand voltage. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLoad or Vss can be specified in 4-bit units). Can directly drive LED.
Port 11	P110-P117	P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output in 1-bit units. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLoad or Vss can be specified in 4-bit units). Can directly drive LED.
Port 12	P120-P127	P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output in 1-bit units. Pull-down resistor can be connected in 1-bit units by the mask option (connection to VLoad or Vss can be specified in 4-bit units). Can directly drive LED.

5.2 CLOCK GENERATOR CIRCUIT

The clock generator circuit has two kinds of generator circuits: the main system clock and subsystem clock.
The instruction time can be changed.

- $0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (with main system clock: 5.0 MHz)
- $122 \mu \mathrm{~s}$ (with subsystem clock: 32.768 kHz)

Fig. 5-1 Clock Generator Circuit Block Diagram

5.3 TIMER/EVENT COUNTER

Six channels of timer/event counters are provided.

- 16-bit timer/event counter: 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel
- 6-bit up/down counter : 1 channel

Table 5-2 Timer/Event Counter Groups and Configurations

		16-bit timer/ event counter	8-bit timer/ event counter	Watch timer	Watchdog timer	6-bit up/ down counter
$\begin{aligned} & \text { 은 } \\ & \text { 우 } \end{aligned}$	Interval timer	1 channel	2 channels	1 channel	1 channel	-
	External event counter	1 channel	2 channels	-	-	1 channel
	Timer output	1 output	2 outputs	-	-	-
	PWM output	1 output	-	-	-	-
	Pulse width measurement	1 input	-	-	-	-
	Square wave output	1 output	2 outputs	-	-	-
	Interrupt Request	1	2	1	1	1
	Test input	-	-	1 input	-	-

Fig. 5-2 16-Bit Timer/Event Counter Block Diagram

Fig. 5-3 8-Bit Timer/Event Counter Block Diagram

Fig. 5-4 Watch Timer Block Diagram

Fig. 5-5 Watchdog Timer Block Diagram

Fig. 5-6 6-Bit Up/Down Counter Block Diagram

Caution When using the 6-bit up/down counter, set the CIO/P03/INTP3 pin in the input mode (set bit 3 of port mode register 0 (PM03) to 1).

5.4 CLOCK OUTPUT CONTROL CIRCUIT

Clocks of the following frequencies can be output to the clock:

- $19.5 \mathrm{kHz} / 39.1 \mathrm{kHz} / 78.1 \mathrm{kHz} / 156 \mathrm{kHz} / 313 \mathrm{kHz} / 625 \mathrm{kHz}$ (with main system clock: 5.0 MHz)
- 32.768 kHz (with subsystem clock: 32.768 kHz)

Fig. 5-7 Clock Output Control Circuit Block Diagram

5.5 BUZZER OUTPUT CONTROL CIRCUIT

Clocks of the following frequencies can be output to the buzzer:

- $1.2 \mathrm{kHz} / 2.4 \mathrm{kHz} / 4.9 \mathrm{kHz}$ (with main system clock: 5.0 MHz)

Fig. 5-8 Buzzer Output Control Circuit Block Diagram

5.6 A/D CONVERTER

An 8-bit resolution 8-channel A/D converter is provided.
This A/D converter can be started in the following two modes:

- Hardware start
- Software start

Fig. 5-9 A/D Converter Block Diagram

5.7 SERIAL INTERFACE

Two channels of clocked serial interfaces are provided.

- Serial interface channel 0
- Serial interface channel 1

Table 5-3 Serial Interface Groups and Functions

Function	Serial interface channel 0	Serial interface channel 1
3-wire serial I/O mode	$\cdot(\mathrm{MSB} / \mathrm{LSB}$ first selectable)	$\bullet(\mathrm{MSB} / \mathrm{LSB}$ first selectable)
SBI (serial bus interface) mode	$\cdot(\mathrm{MSB}$ first)	-
2-wire serial I/O mode	$\cdot(\mathrm{MSB}$ first)	-
3-wire serial I/O mode with automatic transmission/ reception function	-	(MSB/LSB first selectable)

Fig. 5-10 Serial Interface Channel 0 Block Diagram

Fig. 5-11 Serial Interface Channel 1 Block Diagram

5.8 FIP CONTROLLER/DRIVER

An FIP controller/driver having the following features is provided:
(a) Automatic output of segment signals (DMA operation) and digit signals by automatically reading display data
(b) Display mode registers (DSPM0 and DSPM1) that can control an FIP of 9 to 24 segments and 2 to 16 digits
(c) Port pins not used for FIP display can be used as output port or I/O port pins.
(d) Display mode register (DSPM1) can adjust luminance in eight steps.
(e) Hardware suitable for key scan application using segment pins
(f) High-voltage output buffer (FIP driver) that can directly drive an FIP
(g) Display output pins can be connected to a pull-down resistor by the mask option.

Fig. 5-12 Selecting Display Modes

Caution If the total number of digits and segments exceeds 34 , the specified number of digits takes precedence.

Fig. 5-13 FIP Controller/Driver Block Diagram

6. INTERRUPT FUNCTION AND TEST FUNCTION

6.1 INTERRUPT FUNCTION

The following three types of interrupt functions are available:

- Non-maskable interrupt : 1
- Maskable interrupt : 13
- Software interrupt : 1

Table 6-1 Interrupt Source List

Interrupt type	Default priority	Interrupt source		Internal/ external	Vector table address	Note 2 Basic configuration type
		Name	Trigger			
Non-maskable	-	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
		INTUD	6-bit up/down counter match signal generation	Internal		(B)
	5	INTCSIO	End of serial interface channel 0 transfer		O00EH	
	6	INTCSI1	End of serial interface channel 1 transfer		0010H	
	7	INTTM3	Reference time interval signal from watch timer		0012H	
	8	INTTMO	16-bit timer/event counter match signal generation		0014H	
	9	INTTM1	8 -bit timer/event counter 1 match signal generation		0016H	
	10	INTTM2	8 -bit timer/event counter 2 match signal generation		0018H	
	11	INTAD	End of A/D converter conversion		001AH	
	12	INTKS	Key scan timing from FIP controller/driver		001CH	
Software	-	BRK	Execution of BRK instruction	-	003EH	(E)

Notes 1. Default priority is the priority order when several maskable interrupts are generated at the same time. 0 is the highest order and the 12 is the lowest order.
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1.

Fig. 6-1 Basic Configuration of Interrupt Function (1/2)
(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTPO)

Fig. 6-1 Basic Configuration of Interrupt Function (2/2)
(D) External maskable interrupt (except INTPO)

(E) Software interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority specification flag

6.2 TEST FUNCTION

The following test function is available.

Test input source		Internal/external
Name	Trigger	
INTWT	Overflow of watch timer	Internal

Fig. 6-2 Basic Configuration of Test Function

IF : Test request flag
MK : Test mask flag

7. STANDBY FUNCTION

The standby function is to reduce the current dissipation of the system and can be effected in the following two modes:

- HALT mode : In this mode, the operating clock of the CPU is stopped. By using this mode in combination with the normal operation mode, the system can be operated intermittently, so that the average current dissipation can be reduced.
- STOP mode : Oscillation of the main system clock is stopped. All the operations on the main system clock are stopped, and therefore, the current dissipation of the system can be minimized with only the subsystem clock oscillating.

Fig. 7-1 Standby Function

Note By stopping the main system clock, the current dissipation can be reduced. When the CPU operates on the subsystem clock, stop the main system clock by setting bit 7 (MCC) of the processor clock control register (PCC). The STOP instruction cannot be used.

Caution When the main system clock is stopped and the subsystem clock is operating, to switch again from the subsystem clock to the main system clock, allow sufficient time for the oscillation to settle before switching, by coding the program accordingly.

8. RESET FUNCTION

The system can be reset in the following two modes:

- External reset by $\overline{\text { RESET }}$ pin
- Internal reset by watchdog timer that detects hang up

9. INSTRUCTION SET

(1) 8-bit instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

	\#byte	A	$r^{\text {Note }}$	sfr	saddr	!addr16	PSW	[DE]	[HL]	$\begin{gathered} {[\mathrm{HL}+\text { byte] }} \\ {[\mathrm{HL}+\mathrm{B}]} \\ {[\mathrm{HL}+\mathrm{C}]} \end{gathered}$	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	$\begin{aligned} & \text { MOV } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMP } \end{aligned}$											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	$\begin{aligned} & \text { MOV } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMP } \end{aligned}$	MOV									DBNZ		$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$
!addr16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]		MOV											
[HL]		MOV											$\begin{aligned} & \text { ROR4 } \\ & \text { ROL4 } \end{aligned}$
$\begin{aligned} & {[H L+\text { byte }]} \\ & {[H L+B]} \\ & {[H L+C]} \end{aligned}$		MOV											
X													MULU
C													DIVUW

Note Except for $r=A$
(2) 16-bit instruction

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second operand First operand	\#word	AX	rp Note	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW					INCW DECW PUSH POP	
sfrp								
saddrp	MOVW	MOVW						
!addr16	MOVW	MOVW						
SP	MOVW							

Note Only when $r p=B C, D E, H L$
(3) Bit manipulation instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second operand First operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
CY	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1				

(4) Call/Branch instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second operand	AX	!addr16	!addr11	[addr5]	\$addr16
First operand					
Basic operation	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ
Compound operation					BNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Rating	Unit
Power supply voltage	Vdd			-0.3 to +7.0	V
	Vload			$V_{D D}-40$ to $V_{D D}+0.3$	V
	AVdD			-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	AVref			-0.3 to $\mathrm{V}_{\text {DD }}+0.3$	V
	AVss			-0.3 to +0.3	V
Input voltage	V_{11}	P00-P04, P10-P17 (except when used as analog input pins), P20-P27, P30-P37, X1, X2, XT2, RESET		-0.3 to VDD +0.3	V
	V12	P70-P74 N -ch op	N-ch open drain	-0.3 to $+16^{\text {Note } 1}$	V
	V13	P110-P117, P120-P127 P-ch op	P-ch open drain	$V_{D D}-40$ to $V_{D D}+0.3$	V
Output voltage	Vo1	P01-P03, P10-P17, P20-P27, P30-P37		-0.3 to VDd +0.3	V
	Vo2	P70-P74		-0.3 to $+16^{\text {Note }} 1$	V
	Vo3	P80, P81, P90-P97, P100-P107, P110-P117, P120-P127		$V_{D D}-40$ to $V_{D D}+0.3$	V
Analog input voltage	Van	ANIO-ANI7 Analog	out pin	AVss - 0.3 to $A V_{\text {ref }}+0.3$	V
Output current, high	loH	P01-P03, P10-P17, P20-P27, P30-P37 per pin		-10	mA
		P01-P03, P10-P17, P20-P27, P30-P37 total		-30	mA
		P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 per pin		-30	mA
		P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 total		-120	mA
Output current, Iow	lot	$\begin{aligned} & \text { P01-P03, P10-P17, P20-P27, P30-P37, } \\ & \text { P70-P74 per pin } \end{aligned}$	Peak value	30	mA
			rms value	$15^{\text {Note } 2}$	mA
		P70-P74 total	Peak value	100	mA
			rms value	$60^{\text {Note } 2}$	mA
		P01-P03, P10-P17, P20-P27, P30-P37 total	Peak value	50	mA
			rms value	$20^{\text {Note } 2}$	mA
Total power dissipation	PTNote 3	$\mathrm{T}_{\mathrm{A}}=-40$ to $+60{ }^{\circ} \mathrm{C}$		800	mW
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		600	mW
Operating ambient temperature	T_{A}			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

Notes 1. For pins to which pull-up resistors are connected by the mask option, the rating is -0.3 to VdD +0.3 .
2. To obtain the rms value, calculate [rms value] $=[$ peak value $] \times$ šduty.

Notes 3. Permissible total power loss differs depending on the temperature (see the following figure).

How to calculate total power loss

The following three power consumption are available for the μ PD78042F. The sum of the three power consumption should be less than the total power loss $\operatorname{PT}(80 \%$ or less of ratings is recommended).
(1) CPU power consumption: calculate VDD (MAX.) \times IDD1 (MAX.).
(2) Output pin power consumption: Normal output and display output are available. Power consumption when maximum current flows into each output pin.
(3) Pull-down resistor power consumption: Power consumption by pull-down resistor connected to display output pin by the mask option.

The following total power consumption calculation example assumes the case where the characters shown in the figure on the next page are displayed.

Example: The operating conditions are as follows:
$V_{D D}=5 \mathrm{~V} \pm 10 \%$, operating at 5.0 MHz
Supply current (IDD) $=21.6 \mathrm{~mA}$
Display outputs: 11 grids $\times 10$ segments (cut width is $1 / 16$)
It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment pin.
It is also assumed that all display outputs are turned off at key scan timings.
Display output voltage: grid $\quad \mathrm{V}_{03}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ (Voltage drop of 2 V is assumed.)
segment $\quad \mathrm{V}_{0}=\mathrm{V}$ DD -0.4 V (Voltage drop of 0.4 V is assumed.)
Voltage applied to fluorescent indication panel (VLoad) $=-30 \mathrm{~V}$
Mask-option pull-down resistor $=25$ ký

The total power loss is calculated by determining power consumption (1) to (3) under the above conditions.
(1) Power consumption of CPU: $5.5 \mathrm{~V} \times 21.6 \mathrm{~mA}=118.8 \mathrm{~mW}$
(2) Power consumption at output pins:

Grid: $\quad\left(V_{D D}-V_{O 3}\right) \times \frac{\text { total current for all grids }}{\text { number of grids }+1} \times$ digit width $(1-$ cut width $)=$

$$
2 \mathrm{~V} \times \frac{15 \mathrm{~mA} \times 11 \text { grids }}{11 \text { grids }+1} \times(1-1 / 16)=25.8 \mathrm{~mW}
$$

Segment: $\left(V_{D D}-V_{O 3}\right) \times \frac{\text { total segment current for all dots to be lit }}{\text { number of grids }+1}=$

$$
0.4 \mathrm{~V} \times \frac{3 \mathrm{~mA} \times 31 \text { dots }}{11 \mathrm{grids}+1}=3.1 \mathrm{~mW}
$$

(3) Power consumption at pull-down resistors:

Grid

$$
\begin{aligned}
& \frac{\left(\mathrm{VO}_{3}-\mathrm{V}_{\text {LOAD }}\right)^{2}}{\text { pull-down resistance }} \times \frac{\text { number of grids }}{\text { number of grids }+1} \times \text { digit width }= \\
& \frac{(5.5 \mathrm{~V}-2 \mathrm{~V}-(-30 \mathrm{~V}))^{2}}{25 \mathrm{ky}} \times \frac{11 \text { grids }}{11 \text { grids }+1} \times(1-1 / 16)=38.6 \mathrm{~mW}
\end{aligned}
$$

Segment: $\frac{\left(\mathrm{VO}_{\mathrm{O}}-\mathrm{V}_{\text {LOAD }}\right)^{2}}{\text { pull-down resistance }} \times \frac{\text { number of dots to be lit }}{\text { number of grids }+1}=$

$$
\frac{(5.5 \mathrm{~V}-0.4 \mathrm{~V}-(-30 \mathrm{~V}))^{2}}{25 \mathrm{ky}} \times \frac{31 \text { dots }}{11 \mathrm{grids}+1}=127.3 \mathrm{~mW}
$$

Total power consumption $=(1)+(2)+(3)=118.8+25.8+3.1+38.6+127.3=313.6 \mathrm{~mW}$

In this example, the total power consumption does not exceed the rated value for the permissible total power loss shown in the graph on the previous page. Therefore, the calculation result in this example (313.6 mW) satisfies the requirement. If the total power consumption exceed the rated value for the permissible total power loss, the power consumption must be reduced, by reducing the number of built-in pull-down resistors.
10-Segment/11-Digit Display Example

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VdD}=2.7$ to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$\mathrm{V}_{\mathrm{ss}} \mathrm{X}_{1} \quad \mathrm{X} 2$	Oscillation frequency (fx) ${ }^{\text {Note }} 1$		1		5	MHz
	TC2	Oscillation settling time ${ }^{\text {Note } 2}$				4	ms
Crystal		Oscillation frequency (fx) ${ }^{\text {Note }} 1$		1	4.19	5	MHz
		Oscillation settling time ${ }^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			10	ms
						30	
External clock	$\begin{aligned} & \|\mathrm{X} 1 \quad \mathrm{x} 2\| \\ & \qquad D_{0} \\ & \Delta \mathrm{mPD} 74 \mathrm{HCU} 04 \end{aligned}$	X1 input frequency $(f x)^{\text {Note }} 1$		1		5	MHz
		X1 input high, low-leve width ($\mathrm{txH}, \mathrm{txL}$)		100		500	ns

Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Characteristics.
2. Time required until oscillation becomes stable after VDD is applied or the STOP mode is disabled.

Cautions 1. If the main system clock oscillator is to be used, wire the area inside the broken line square as follows to avoid influence of wiring capacitance:

- Make wiring as short as possible.
- Do not cross other signal lines.
- Do not get close to lines with fluctuating large current.
- Make sure that the connecting points of the capacitor of the oscillator always have the same electric potential as Vss.
- Do not connect the oscillator to a ground pattern that conducts a large current.
- Do not take out signal from the oscillator.

2. When switching to the main system clock again after the subsystem clock has been used with the main system clock stopped, be sure to set the program to provide enough time for the oscillation to stabilize.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal	$\frac{\mid x_{1} \quad \text { XT2 Vss }}{\xi_{\pi}^{n} R}$	Oscillation frequency (fxT) Note 1		32	32.768	35	kHz
		Oscillation settling time ${ }^{\text {Note }} 2$	$V_{D D}=4.5$ to 5.5 V		1.2	2	s
						10	
External	XT1 XT 2	XT1 input frequency (fxt) ${ }^{\text {Note }} 1$		32		100	kHz
	\triangle	XT1 input high, lowlevel width ($\mathrm{txтн}, \mathrm{txTL}$)		5		15	$\mu \mathrm{s}$

Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Characteristics.
2. Time required until oscillation becomes stable after $V_{D D}$ reaching MIN. of oscillation voltage range.

Cautions 1. If the subsystem clock oscillator is to be used, wire the area inside the broken line square as follows to avoid influence of wiring capacitance:

- Make wiring as short as possible.
- Do not cross other signal lines.
- Do not get close to lines with fluctuating large current.
- Make sure that the connecting points of the capacitor of the oscillator always have the same electric potential as Vss.
- Do not connect the oscillator to a ground pattern that conducts a large current.
- Do not take out signal from the oscillator.

2. The subsystem clock oscillator is more likely to have malfunctions due to noise than the main system clock oscillator because gain for the subsystem clock oscillator is made lower to reduce current consumption. When using the subsystem clock, be careful about how to connect wires.

RECOMMENDED OSCILLATOR CONSTANT

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA $=-40$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product name	Frequency (MHz)	Recommended circuit constant		Oscillator voltage range		Remark
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CSB1000J	1.00	100	100	2.7	5.5	$\mathrm{Rd}=4.7 \mathrm{ky}$ Note
	CSA2.00MG040	2.00	100	100	2.7	5.5	
	CST2.00MG040	2.00	-	-	2.7	5.5	Built-in capacitor
	CSA4.00MG	4.00	30	30	2.7	5.5	
	CST4.00MGW	4.00	-	-	2.7	5.5	Built-in capacitor
	CSA5.00MG	5.00	30	30	2.7	5.5	
	CST5.00MGW	5.00	-	-	2.7	5.5	Built-in capacitor
TDK Corp.	CCR1000K2	1.00	150	150	2.7	5.5	Surface-mount type
	CCR2.0MC3	2.00	-	-	2.7	5.5	Built-in capacitor, surface-mount type
	CCR4.0MC3	4.00	-	-	2.7	5.5	Built-in capacitor, surface-mount type
	FCR4.0MC5	4.00	-	-	2.7	5.5	Built-in capacitor
	CCR5.0MC3	5.00	-	-	2.7	5.5	Built-in capacitor, surface-mount type
	FCR5.0MC5	5.00	-	-	2.7	5.5	Built-in capacitor
Matsushita Electronics Components Co., Ltd.	EFOEC2004A4	2.00	33	33	2.7	5.5	Built-in capacitor
	EFOS2004B5	2.00	33	33	2.7	5.5	Built-in capacitor, surface-mount type
	EFOEC3584A4	3.58	33	33	2.7	5.5	Built-in capacitor
	EFOS3584B5	3.58	33	33	2.7	5.5	Built-in capacitor, surface-mount type
	EFOEC4004A4	4.00	33	33	2.7	5.5	Built-in capacitor
	EFOS4004B5	4.00	33	33	2.7	5.5	Built-in capacitor, surface-mount type
	EFOEC5004A4	5.00	33	33	2.7	5.5	Built-in capacitor
	EFOS5004B5	5.00	33	33	2.7	5.5	Built-in capacitor, surface-mount type

Note When the CSB1000J (1.00 MHz) manufactured by Murata Mfg. is used, a limiting resistor (4.7 ký) is necessary (see the figure in the next page). When one of other resonators is used, no limiting resistor is required.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator that being used.

Recommended sample circuit for the main system clock when the CSB1000J manufactured by Murata Mfg. is used

CAPACITANCE ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				15	pF
Output capacitance	Cout	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				35	pF
Input/output capacitance	Cıo	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V	P01-P03, P10-P17, P20-P27, P30-P37			15	pF
			P70-P74			20	pF
			P110-P117, P120-P127			35	pF

Remark Unless otherwise specified, the characteristics of the shared pin are the same as the characteristics of the port pin.

POWER SUPPLY VOLTAGE ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
CPUNote 1		$2.7^{\text {Note 2 }}$		5.5	V
Display controller/driver		4.5		5.5	V
PWM mode of 16-bit timer/event counter (TM0)		4.5		5.5	V
A/D converter					
Other hardware		4.0		5.5	V

Notes 1. Except for system clock oscillator, display controller/driver, and PWM.
2. Operating power supply voltage differs depending on the cycle time. See the AC Characteristics.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input voltage	$\mathrm{V}_{\mathbf{H} 1}$	P21, P23		0.7 VDD		Vdo	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00-P03, P20, P22, P24-P27, P33, P34, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
	Vıн3	P70-P74	N -ch open drain	0.7 VDD		15Note 1	V
	$\mathrm{V}_{\mathrm{H} 4}$	X1, X2Note 2		$V_{D D}-0.5$		VDD	V
	$\mathrm{V}^{\text {H } 5}$	XT1/P04, XT2Note 2	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$V_{\text {DD }}-0.5$		VDD	V
				$V_{D D}-0.3$		VDD	V
	$\mathrm{V}^{\text {H66 }}$	P10-P17, P30-P32, P35-P37	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V	0.65 VDD		VDD	V
				$0.7 \mathrm{~V}_{\mathrm{DD}}$		VDD	V
	V_{1+7}	P110-P117, P120-P127	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$0.7 \mathrm{VDD}^{\text {d }}$		VDD	V
				VDD-0.5		VDD	V
Low-level input voltage	VIL1	P21, P23		0		0.3VDD	V
	VIL2	P00-P03, P20, P22, P24-P27, P33, P34, $\overline{\text { RESET }}$		0		0.2 VDD	V
	VIL3	P70-P74	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0		0.3 VDD	V
				0		0.2VDD	V
	VIL4	$\text { X1, X2Note } 2$		0		0.4	V
		XT1/P04, XT2Note 2	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0		0.4	V
				0		0.3	V
	VIL6	P10-P17, P30-P32, P35-P37		0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	VIL7	P110-P117, P120-P127		VDD - 35		0.3VDD	V
High-level output voltage	Vон	$\begin{aligned} & \text { P01-P03, P10-P17, P20-P27, } \\ & \text { P30-P37, P80, P81, P90-P97, } \\ & \text { P100-P107, P110-P117, } \\ & \text { P120-P127 } \end{aligned}$	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \text { Іон }=-1 \mathrm{~mA} \end{aligned}$	VDD-1.0			V
			$\mathrm{IOH}=-100 \mu \mathrm{~A}$	$V_{D D}-0.5$			V
Low-level output voltage	VoL1	P30-P37, P70-P74	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01-P03, P10-P17, P20-P27	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	$\overline{\mathrm{SB} 0, \mathrm{SB} 1, \overline{\mathrm{SCKO}}}$	$V_{D D}=4.5$ to 5.5 V , With open-drain and pull-up ($R=1 \mathrm{k} \Omega$)			0.2Vdo	V
	Vot3	P01-P03, P10-P17, P20-P27, P30-P37, P70-P74	$\mathrm{loL}=400 \mu \mathrm{~A}$			0.5	V

Notes 1. Pins to which pull-up resistors are connected by the mask option become Vdd.
2. If the X 1 pin is used for high-level voltage input, the X 2 pin is used for low-level voltage input, or vice versa. This is also true for the XT1/P04 pin and XT2 pin.

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input leakage current	$\mathrm{ILIH1}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	$\begin{aligned} & \text { P00-P03, P10-P17, } \\ & \text { P20-P27, P30-P37, RESET } \end{aligned}$			3	$\mu \mathrm{A}$
	ILIH2		X1, X2, XT1/P04, XT2			20	$\mu \mathrm{A}$
	ІІІн3	V IN $=15 \mathrm{~V}$	P70-P74			20	$\mu \mathrm{A}$
	ILIH4	$\begin{aligned} & \text { P110-P117, P120-P127, } \\ & V_{I N}=V_{D D} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			3Note 1	$\mu \mathrm{A}$
						3Note 2	$\mu \mathrm{A}$
Low-level input leakage current	ILIL1	V IN $=0 \mathrm{~V}$	$\begin{aligned} & \text { P00-P03, P10-P17, } \\ & \text { P20-P27, P30-P37, } \overline{\text { RESET }} \end{aligned}$			-3	$\mu \mathrm{A}$
	ILIL2		X1, X2, XT1/P04, XT2			-20	$\mu \mathrm{A}$
	ILIL3		P70-P74			-3Note 3	$\mu \mathrm{A}$
	ILIL4		P110-P117, P120-P127			-10	$\mu \mathrm{A}$
High-level output leakage currentNote 4	ILOH1	Vout $=$ VDD	$\begin{aligned} & \text { P01-P03, P10-P17, P20-P27, } \\ & \text { P30-P37, P80, P81, P90-P97, } \\ & \text { P100-P107, P110-P117, P120-P127 } \end{aligned}$			3	$\mu \mathrm{A}$
	ILOH2	Vout $=15 \mathrm{~V}$	P70-74, N-ch open drain			20	$\mu \mathrm{A}$
Low-level output leakage currentNote 4	ILOL1	Vout $=0 \mathrm{~V}$	$\begin{aligned} & \text { P01-P03, P10-P17, P20-P27, } \\ & \text { P30-P37, P70-P74 } \end{aligned}$			-3	$\mu \mathrm{A}$
	ILOL2	Vout $=$ V LOAD $=\mathrm{V}_{\text {dD }}-35 \mathrm{~V}$	$\begin{aligned} & \text { P80, P81, P90-P97, P100-P107, } \\ & \text { P110-P117, P120-P127 } \end{aligned}$			-10	$\mu \mathrm{A}$
Display output current	Iod	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {O3 }}=\mathrm{V}_{\text {DD }}-2 \mathrm{~V}$		-15	-25		mA
Mask option pull-up resistor	R_{1}	V IN $=0 \mathrm{~V}, \mathrm{P} 70-\mathrm{P} 74$		20	40	90	ký
Software pullup resistor	R2	$\begin{aligned} & \hline \mathrm{V} \mathbf{1 N}=0 \mathrm{~V}, \\ & \text { P01-P03, P10-P17, } \\ & \text { P20-P27, P30-P37 } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	15	40	90	k ý
				20		500	ky
Mask option pull-down resistor	R_{3}	$\begin{aligned} & \text { P80, P81, P90-P97, } \\ & \text { P100-P107, P110-P117, } \\ & \text { P120-P127 } \end{aligned}$	$\mathrm{V}_{\text {O3 }}-\mathrm{V}_{\text {load }}=35 \mathrm{~V}$	25	65	135	ký
			$\mathrm{V}_{\mathrm{o3}}-\mathrm{V}_{\text {ss }}=5 \mathrm{~V}$	15	40	90	ký
	R_{4}	P30-P37, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		40	80	150	ký

Notes 1. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the specification of the mask option), a high-level input leakage current of $150 \mu \mathrm{~A}$ (MAX.) flows only during 1.5 clocks after a read instruction has been executed to read out port 11 or 12 (P11 or P12) or port mode register 11 or 12 (PM11 or PM12). Outside the 1.5 clocks after a read instruction, the current is $3 \mu \mathrm{~A}$ (MAX.).
2. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the specification of the mask option), a high-level input leakage current of $90 \mu \mathrm{~A}$ (MAX.) flows only during 1.5 clocks after a read instruction has been executed to read out P11, P12, PM11, or PM12. Outside the 1.5 clocks after a read instruction, the current is $3 \mu \mathrm{~A}$ (MAX.).
3. When P70 to P74 do not contain the pull-down resistors (according to the specification of the mask option), a low-level input leakage current of $-150 \mu \mathrm{~A}$ (MAX.) flows only during 1.5 clocks after a read instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the 1.5 clocks after a read out instruction, the current is $-3 \mu \mathrm{~A}$ (MAX.).
4. Current which flows in the built-in pull-up or pull-down resistor is not included.

Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note }} 1$	IdD1	5.0 MHz crystal oscillation Operating mode	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$ Note 2		7.2	21.6	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$ Note 3		0.9	2.7	mA
	IdD2	5.0 MHz crystal oscillation HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1.3	3.9	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		550	1650	$\mu \mathrm{A}$
	IdD3	32.768 kHz crystal oscillation Operating modeNote 4	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		60	120	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		35	70	$\mu \mathrm{A}$
	IdD4	32.768 kHz crystal oscillation HALT modeNote 4	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		25	50	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		5	10	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode Feedback resistor connected	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		1	20	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
	Idd6	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode Feedback resistor not connected	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.1	20	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. This current excludes the $A V_{\text {ref current, port current, and current which flows in the built-in pull-down }}$ resistor (mask option).
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00 H)
3. When operating at low-speed mode (when the PCC is set to 04 H)
4. When the main system clock is stopped

AC CHARACTERISTICS

(1) Basic operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Tcy	Operated with main system clock	$V_{\text {DD }}=4.5$ to 5.5 V	0.4		32	$\mu \mathrm{s}$
				0.8		32	$\mu \mathrm{S}$
		Operated with subsystem clock		$40^{\text {Note } 1}$	122	125	$\mu \mathrm{S}$
TI1, 2 input frequency	f_{T}	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V		0		2	MHz
				0		138	kHz
TI1, 2 input high, low-level width	tтін ttil	V DD $=4.5$ to 5.5 V		250			ns
				3.6			$\mu \mathrm{S}$
Interrupt input high, low-level width	tinth tintL	INTPO		8/fsam ${ }^{\text {Note } 2}$			$\mu \mathrm{s}$
		INTP1-INTP3		10			$\mu \mathrm{s}$
RESET lowlevel width	trsL			10			$\mu \mathrm{s}$

Notes 1. Value when external clock input is used as subsystem clock. When crystal is used, the value becomes $114 \mu \mathrm{~s}$.
2. Selection of fsam $=\mathrm{fx} / 2^{\mathrm{N}+1}, \mathrm{fx} / 64, \mathrm{f}_{\mathrm{x}} / 128$ is available ($\mathrm{N}=0$ to 4) by bits 0 and 1 (SCS0, SCS 1) of sampling clock select register (SCS).

Tcy vs. Vdo (with main system clock operated)

(2) Serial interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)
(a) Serial interface channel 0
(i) Three-wire serial I/O mode ($\overline{\mathbf{S C K O}}$: Internal clock output)

Note C is a load capacitance of the $\overline{\mathrm{SCKO}}$ or SOO output line.
(ii) Three-wire serial I/O mode (SCKO: External clock input)

Note C is a load capacitance of the SO0 output line.
(iii) SBI mode (SCKO: Internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксүз	$V_{D D}=4.5$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCKO }}$ high, low-level width	tкнз tкı3	$V_{D D}=4.5$ to 5.5 V		tксуз/2-50			ns
				tкčз/2-150			ns
SB0, SB1 setup time to $\overline{\text { SCK0 }} \uparrow$	tsıк3	$V_{\text {DD }}=4.5$ to 5.5 V		100			ns
				300			ns
SB0, SB1 hold time from SCKO \uparrow	tкsı3			tксүз/2			ns
$\overline{\text { SCK0 }} \downarrow \rightarrow$ SB0, SB1 output delay time	tkso3	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$V_{\text {dD }}=4.5$ to 5.5 V	0		250	ns
				0		1000	ns
$\overline{\text { SCK0 }} \uparrow \rightarrow$ SB0, SB1 \downarrow	tksb			tксүз			ns
SB0, SB1 $\downarrow \rightarrow$ SCK0 \downarrow	tsbk			tксүз			ns
SB0, SB1 high-level width	tsb			tксүз			ns
SB0, SB1 low-level width	tsbL			tксүз			ns

Note R is a load resistance of the $\overline{S C K 0}$, SB0, or SB1 output line, and C is its load capacitance.
(iv) SBI mode (SCKO: External clock input)

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.
(v) Two-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tкcy5	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$V_{D D}=4.5$ to 5.5 V	1600			ns
				3800			ns
$\overline{\text { SCK0 }}$ high-level width	tkH5			tKcys/2-160			ns
$\overline{\text { SCKO }}$ low-level width	tkL5			tkcys/2-50			ns
SB0, SB1 setup time to $\overline{\mathrm{SCKO}} \uparrow$	tsık5			300			ns
SB0, SB1 hold time from SCKO \uparrow	tksı5			600			ns
$\overline{\text { SCK0 }} \downarrow \rightarrow$ SB0, SB1 output	tksos		$V_{D D}=4.5$ to 5.5 V	0		250	ns
				0		1000	ns

Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.
(vi) Two-wire serial I/O mode ($\overline{\mathbf{S C K O}}$: External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy 6	$V_{D D}=4.5$ to 5.5 V		1600			ns
				3800			ns
$\overline{\text { SCKO }}$ high-level width	tкH6			650			ns
$\overline{\text { SCKO }}$ low-level width	tkL6			800			ns
SB0, SB1 setup time to $\overline{\text { SCKO }} \uparrow$	tsik6			100			ns
SB0, SB1 hold time from $\overline{\text { SCKO }} \uparrow$	tksic			tксү6/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SB0, SB1 output	tkso6	$\mathrm{R}=1 \mathrm{k} \Omega,$	$V_{D D}=4.5$ to 5.5 V	0		300	ns
				0		1000	ns
$\overline{\text { SCK0 }}$ rise time and fall time	$\begin{aligned} & \text { tR6 } \\ & \text { tF6 } \end{aligned}$					160	ns

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.
(b) Serial interface channel 1
(i) Three-wire serial I/O mode ($\overline{\text { SCK1: }}$: Internal clock output)

Note C is a load capacitance of the $\overline{\mathrm{SCK} 1}$ or SO1 output line.

(ii) Three-wire serial I/O mode (SCK1: External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксү8	$V_{\text {DD }}=4.5$ to 5.5 V		800			$n s$
				3200			ns
$\overline{\text { SCK1 }}$ high, low-level width	$\begin{aligned} & \text { tkH8 } \\ & \text { tkL8 } \end{aligned}$	$V_{D D}=4.5$ to 5.5 V		400			ns
				1600			ns
SI1 setup time to $\overline{\text { SCK } 1} \uparrow$	tsiks	V DD $=4.5$ to 5.5 V		100			ns
SI1 hold time from $\overline{\text { SCK1 }} \uparrow$	tKsı8			400			$n s$
$\overline{\text { SCK } 1} \downarrow \rightarrow$ SO1 output delay time	tkso8	$\mathrm{C}=100 \mathrm{pF}$ Note	$\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V			300	ns
						1000	$n s$
$\overline{\text { SCK1 }}$ rise time and fall time	$\begin{aligned} & \text { tR8 } \\ & \text { t } \mathrm{t} 8 \end{aligned}$					160	ns

Note C is a load capacitance of the SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmission/reception function ($\overline{\text { SCK1 }}$: internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy9	$V_{\text {DD }}=4.5$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK1 }}$ high, low-level width	tкн9 tkL9	$V_{D D}=4.5$ to 5.5 V		tксү9/2-50			ns
				tкcr9/2-150			ns
SI1 setup time to $\overline{\text { SCK1 }} \uparrow$	tsik9			100			ns
SI1 hold time from $\overline{\text { SCK1 }} \uparrow$	tкs19			400			ns
$\overline{\mathrm{SCK} 1} \downarrow \rightarrow$ SO1 output delay time	tkso9	$\mathrm{C}=100 \mathrm{pF}$ Note	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			300	ns
						1000	ns
$\overline{\text { SCK1 }} \uparrow \rightarrow$ STB \uparrow	tsbd			tkcy9/2-100		thcys/2 + 100	ns
Strobe signal high level width	tsbw			tıcy9 - 30		tксү9 + 30	ns
Busy signal setup time (to busy signal detection timing)	tbys			100			ns
Busy signal hold time (to busy signal detection timing)	tBY\%			100			ns
Busy inactive $\rightarrow \overline{\text { SCK1 }} \downarrow$	tsps					2tксү9	ns

Note C is a load capacitance of the $\overline{\text { SCK1 }}$ or SO1 output line.
(iv) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: external clock input)

Note C is a load capacitance of the SO1 output line.

AC timing test points (except X1, XT1 input)

Clock timing

Tl timing

TI1, TI2

Serial transfer timing

3-wire serial I/O mode:

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

2-wire serial I/O mode:

3-wire serial I/O mode with automatic transmission/reception function:

3-wire serial I/O mode with automatic transmission/reception function (busy processing):

Note $\overline{\text { SCK }}$ does not become low actually at this point, but is indicated so to conform to the timing specification.
A / D CONVERTER CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=\mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V , $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error ${ }^{\text {Note } 1}$					0.8	\%
Conversion time ${ }^{\text {Note } 2}$	tconv	$1 \mathrm{MHz}-\mathrm{fx}-5.0 \mathrm{MHz}$	19.1		200	$\mu \mathrm{s}$
Sampling time ${ }^{\text {Note }} 3$	tsamp		2.86		30	$\mu \mathrm{s}$
Analog signal input voltage	VIAN		AVss		AVref	V
Reference voltage	AVref		4.0		AVDD	V
AV $\mathrm{feF}^{\text {resistor }}$	Ravref		4	14		k ý
AVdd current	Aldo			200	400	$\mu \mathrm{A}$

Notes 1. Quantization error ($\pm 1 / 2 L S B$) is not included. This parameter is indicated as the ratio to the full-scale value.
2. Set the A / D conversion time to $19.1 \mu \mathrm{~s}$ or more.
3. Sampling time depends on the conversion time.

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Voddr		2.0		5.5	V
Data retention supply current	IDDDR	$V_{\text {DDDR }}=2.0 \mathrm{~V}$ Subsystem clock stopped Feedback resistor not connected		0.1	10	$\mu \mathrm{A}$
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time	twalt	Release by RESET		$2^{17 / f x}$		ms
		Release by interrupt		Note		ms

Note Selection of $2^{12 / f x, ~} 2^{14} / \mathrm{fx}$ to $2^{17 / f x}$ is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation settling time select register (OSTS).

Data retention timing (STOP mode release by RESET)

Data retention timing (standby release signal: STOP mode release by interrupt signal)

Interrupt input timing

$\overline{\text { RESET }}$ input timing

11. CHARACTERISTIC CURVE (REFERENCE VALUE)

Ido vs. fx

Ido vs. fx

Vol vs. lol (Ports 0, 2, and 3)

12. PACKAGE DRAWING

80 PIN PLASTIC QFP ($\mathbf{1 4 \times 2 0)}$

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	0.8	0.031
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.8($ T.P. $)$	0.031 (T.P.)
K	1.8 ± 0.2	$0.071_{-0.008}^{+0.009}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0}^{+0.05}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
R	5 ± 5	5 ± 5
S	3.0 MAX.	0.119 MAX.
		P80GF-80-3B9-3

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

13. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the $\mu \mathrm{PD} 78042 \mathrm{~F}, \mu \mathrm{PD} 78043 \mathrm{~F}, \mu \mathrm{PD} 78044 \mathrm{~F}$, or μ PD78045F.

For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 13-1 Soldering Conditions for Surface-Mount Devices
μ PD78042FGF- $x \times x-3 B 9$: 80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78043FGF- $x \times x-3 B 9$: 80 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
μ PD78044FGF- $x \times x-3 B 9$: 80 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
μ PD78045FGF- $x \times x-3 B 9$: 80 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)

Soldering process	Soldering conditions	Recommended conditions
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less $\left(210^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 3	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less $\left(200^{\circ} \mathrm{C}\right.$ or more) Maximum allowable number of reflow processes: 3	VP15-00-3
Wave soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : $120{ }^{\circ} \mathrm{C}$ max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: $300{ }^{\circ} \mathrm{C}$ or less Heat time: 3 seconds or less (for one side of a device)	

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

APPENDIX A DEVELOPMENT TOOLS

The following tools are available for development of systems using the μ PD78042F, μ PD78043F, μ PD78044F, or μ PD78045F.

Language processing software

RA78K/0 ${ }^{\text {Notes } 1,2,3,4}$	Assembler package common to $78 \mathrm{~K} / 0$ series
CC78K/0 ${ }^{\text {Notes } 1,2,3,4}$	C compiler package common to $78 \mathrm{~K} / 0$ series
DF78044 ${ }^{\text {Notes } 1,2,3,4}$	Device file for μ PD78044A subseries
CC78K/0-L	

PROM writing tools

PG-1500	PROM programmer
PA-78P048GF	Programmer adapter connected to PG-1500
PA-78P048KL-S	
PG-1500 controllerNotes 1, 2	Control program for PG-1500

Debugging tools

IE-78000-R	In-circuit emulator common to $78 \mathrm{~K} / 0$ series
IE-78000-R-A ${ }^{\text {Note } 8}$	In-circuit emulator common to $78 \mathrm{~K} / 0$ series (for integrated debugger)
IE-78000-R-BK	Break board common to $78 \mathrm{~K} / 0$ series
IE-78044-R-EM	Emulation board for evaluating $\mu \mathrm{PD} 78044 \mathrm{~A}$ subseries
EP-78130GF-R	Emulation probe common to μ PD78134
EV-9200G-80	Socket mounted on target system created for 80-pin plastic QFP
SM78K0 Notes 5, 6, 7	System simulator common to $78 \mathrm{~K} / 0$ series
ID78K0 Notes 4, 5, 6, 7, 8	Integrated debugger for IE-78000-R-A
SD78K/0 Notes 1, 2	Screen debugger for IE-78000-R
DF78044 ${ }^{\text {Notes 1, 2, 5, 6, } 7}$	Device file common to μ PD78044A subseries

Real-time OS

RX78K/0 Notes 1, 2, 3, 4	Real-time OS for $78 \mathrm{~K} / 0$ series
MX78K0 Notes 1, 2, 3,4	OS for $78 \mathrm{~K} / 0$ series

Notes 1. PC-9800 series (MS-DOS ${ }^{\text {TM }}$) based
2. IBM PC/AT ${ }^{T M}$ and compatible (PC DOS $\left.{ }^{T M} / I B M ~ D O S ~ T M / M S-D O S\right) ~ b a s e d ~$
3. HP9000 series $300^{\text {TM }}$ (HP-UX ${ }^{\text {TM }}$) based
4. HP9000 series $700^{T M}$ (HP-UX) based, SPARCstation ${ }^{T M}$ (SunOS ${ }^{T M}$) based, EWS-4800 series (EWSUX/V) based
5. PC-9800 series (MS-DOS + Windows ${ }^{\text {TM }}$) based
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
7. NEWS $^{\text {TM }}$ (NEWS-OS ${ }^{T M}$) based
8. Under development

Fuzzy inference development support system

FE9000 ${ }^{\text {Note 1/FE9200 Note 3 }}$	Fuzzy knowledge data creation tool
FT9080 ${ }^{\text {Note 1/FT9085 Note 2 }}$	Translator
FI78K0 Notes 1, $\mathbf{2}$	Fuzzy inference module
FD78K0 Notes 1,2	Fuzzy inference debugger

Notes 1. PC-9800 series (MS-DOS) based
2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based

Remarks 1. Please refer to the $78 K / 0$ Series Selection Guide (U11126E) for information on third party development tools.
2. RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78044.

APPENDIX B RELATED DOCUMENTS

- Documents Related to Devices

Document name	Document No.	
	Japanese	English
μ PD78044F Sub-Series User's Manual	U10908J	U10908E
μ PD78042F, 78043F, 78044F, 78045F Data Sheet	U10700J	This manual
μ PD78P048A Data Sheet	U10611J	U10611E
μ PD78044A, 78044F Sub-Series Special Function Registers	U10701J	
$78 K / 0$ Series User's Manual, Instruction	IEU-849	IEU-1372
$78 K / 0$ Series Instruction Summary Sheet	U10903J	
$78 K / 0$ Series Instruction Set	U10904J	-

- Documents Related to Development Tools (User's Manual)

Document name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 Compiler Application Note	Programming Know-How	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	-
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Base		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Base		EEU-5008	U10540E
IE-78000-R		EEU-810	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78044-R-EM		EEU-833	EEU-1424
EP-78130GF-R		EEU-943	EEU-1470
SM78K0 System Simulator	Reference	EEU-5002	U10181E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger	Reference	U11151J	-
SD78K/0 Screen Debugger	Tutorial	EEU-852	U10539E
	Reference	EEU-816	-
SD78K/0 Screen Debugger	Tutorial	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Base	Reference	U11279J	EEU-1413

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

- Documents Related to Software to Be Incorporated into the Product (User's Manual)

Document name		Document No.	
	Japanese	English	
$78 \mathrm{~K} / 0$ Series Real-Time OS	Basic	EEU-912	-
	Installation	EEU-911	-
	Technical	EEU-913	-
OS for 78K/0 Series MX78K0	Basic	EEU-5010	-
Tool for Creating Fuzzy Knowledge Data	EEU-829	EEU-1438	
78K/0, $78 \mathrm{~K} / I$, Support System, Translator	EEU-829	EEU-1444	
78K/0 Series Fuzzy Inference Development Support System, Fuzzy Inference Module	EEU-858	EEU-1441	
$78 K / 0 ~ S e r i e s ~ F u z z y ~ I n f e r e n c e ~ D e v e l o p m e n t ~ S u p p o r t ~ S y s t e m, ~$ Fuzzy Inference Debugger	EEU-921	EEU-1458	

- Other Documents

Document name	Document No.	
	Japanese	English
IC PACKAGE MANUAL	C10943X	
SMD Surface Mount Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	
Guide to Quality Assurance for Semiconductor Device	MEI-603	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	MEI-604	

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.
[MEMO]

Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

CMOS-specific handling of unused input pins
Caution Hold CMOS devices at a fixed input level.
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDD or GND pin through a resistor.
If handling of unused pins is documented, follow the instructions in the document.

Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.
Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.
When you turn on a device having a reset function, be sure to reset the device first.

[^0]
Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Mountain View, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby Sweden
Tel: 8-63 80820
Fax: 8-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

Note that "preliminary" is not indicated in this document, even though the related documents may be preliminary versions.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: FIP is a trademark of NEC Corporation.
 IEBus is trademark of NEC Corporation.
 MS-DOS and Windows are trademarks of Microsoft Corporation.
 IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
 HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard.
 SPARCstation is a trademark of SPARC International, Inc.
 SunOS is a trademark of Sun Microsystems, Inc.
 NEWS and NEWS-OS are trademarks of SONY Corporation.

