

Description

The ACE633 uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications.

Features

N-Channel

 $V_{DS}(V)=60V$

 $I_D=5A$

 $R_{DS(ON)}$

 $<35m\Omega (V_{GS}=10V)$

 $<40 \text{m}\Omega \ (V_{GS}=4.5 \text{V})$

P-Channel

 $V_{DS}(V)=-60V$

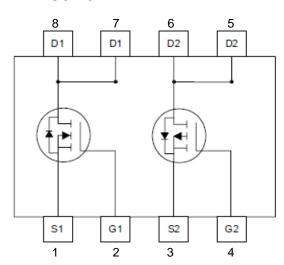
 $I_D = -3.5A$

 $R_{\text{DS}(\text{ON})}$

 $<75m\Omega (V_{GS}=-10V)$

 $<90m\Omega (V_{GS}=-4.5V)$

Absolute Maximum Ratings


 $(T_A=25^{\circ}C$ Unless otherwise noted)

Parameter		Тур	Unit		
raiametei	Symbol	N-Channel	P-Channel	Offic	
Drain-Source Voltage	V_{DSS}	60	-60	V	
Gate-Source Voltage	V_{GSS}	±20	±20	V	
Continuous Drain Current (T _J =150°C)	5℃	5	-3.5	Α	
*AC T _A =7	O°C I _D	4	-2.8		
Drain Current (pulse) * B	I _{DM}	22	-22	Α	
Power Dissipation T _A =2	1 1	2	2	W	
T _A =7	o°C r□	1.3	1.3	VV	
Operating Junction Temperature	TJ	-55 to 150		°С	
Storage Temperature Range		-55 to 150		οС	

Packaging Type

Ordering information

Electrical Characteristics (N-Channel)

 $(T_A=25^{\circ}C$ Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I_D =250uA	60			V
Drain-Source On Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =4.5A		27	35	mΩ
		V_{GS} =4.5V, I_D =3A		32	40	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1	1.4	3	V
Gate Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V			100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =48V, V_{GS} =0V			1	uA
Forward Transconductance	g FS	V_{DS} =15V, I_{D} =5.3V		24		S
Diode Forward Voltage	V_{SD}	I_{SD} =1A, V_{GS} =0V		0.73	1.0	V
Maximum Body-Diode Continuous Current	Is				3.1	Α

Switching							
Total Gate Charge	Q_g	\/ 20\/ \/ 5 \/	11.26	14.64			
Gate-Source Charge	Q_{gs}	V_{DS} =30V, V_{GS} =5V, I_{D} =5.3A	3.77	4.9	nC		
Gate-Drain Charge	Q_{gd}	I _D =5.3A	4.08	5.3			
Turn-On Delay Time	t _{d(on)}	V _{GS} =4.5V, V _{DS} =30V,	18.12	36.24			
Turn-On Rise Time	t _r	$R_L=6.8\Omega$ $I_D=-0.5A$, $R_{GEN}=1\Omega$	17.68	35.36			
Turn-Off Delay Time	t _{d(off)}		25	50	ns		
Turn- Off Rise Time	t _f		8.92	17.84			
Dynamic							
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =30V, f=1MHZ	1062.8				
Output Capacitance	Coss		157.26		pF		
Reverse Transfer capacitance	Crss		56.56				

Note:

- A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- B: Repetitive rating, pulse width limited by junction temperature.
- C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

Typical Characteristics (N-Channel)

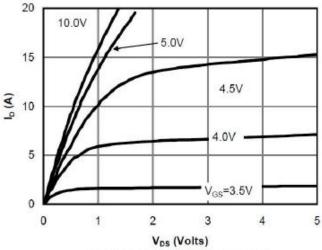


Fig 1: On-Region Characteristics

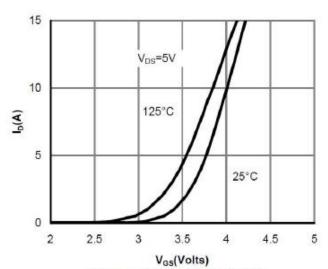


Figure 2: Transfer Characteristics

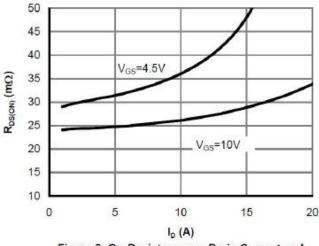


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

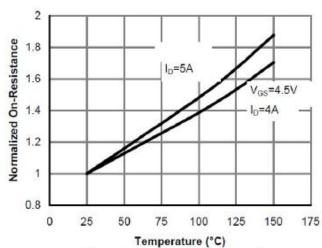


Figure 4: On-Resistance vs. Junction
Temperature

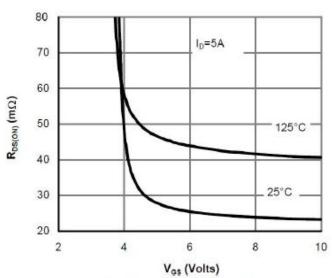


Figure 5: On-Resistance vs. Gate-Source Voltage

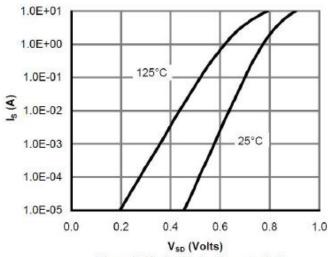


Figure 6: Body-Diode Characteristics

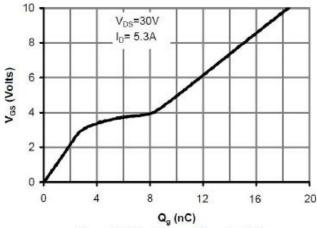


Figure 7: Gate-Charge Characteristics

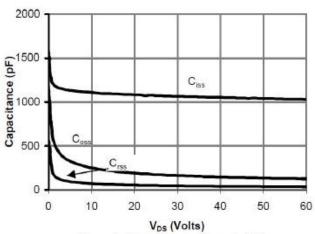


Figure 8: Capacitance Characteristics

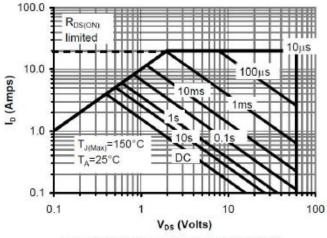


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

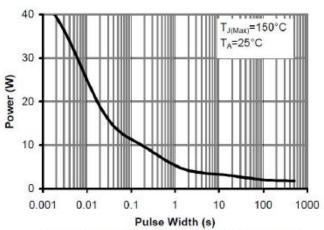


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

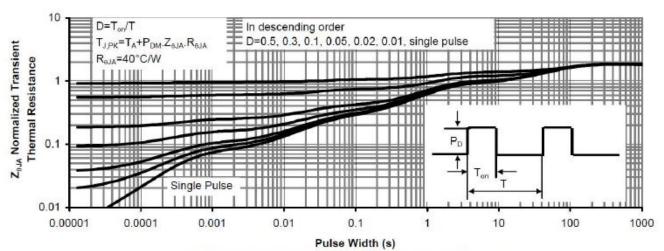


Figure 11: Normalized Maximum Transient Thermal Impedance

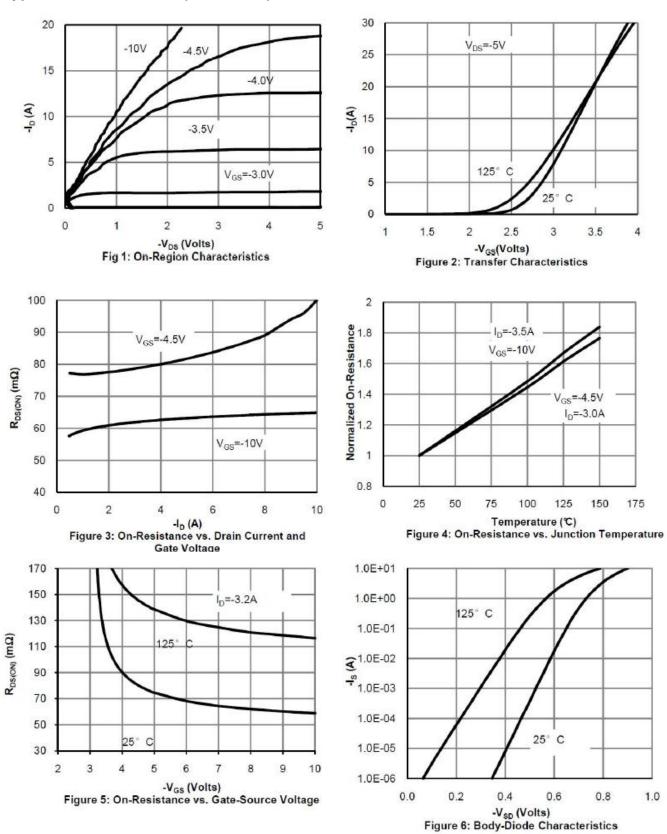
Electrical Characteristics (P-Channel)

(T_△=25°C Unless otherwise noted)

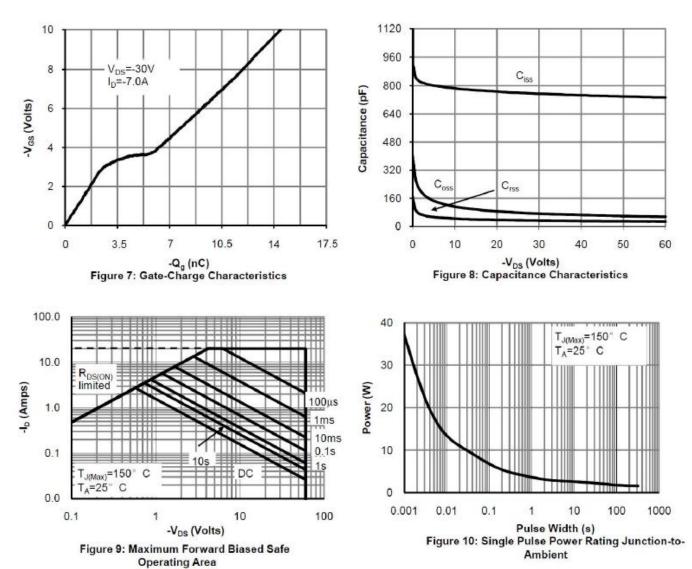
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_D =250uA	-60			V	
Drain-Source On Resistance	R _{DS(ON)}	V_{GS} =-10V, I_D =-4.5A		64	75	mΩ	
		V_{GS} =-4.5V, I_{D} =-3A		79	90		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-1	-1.7	-2.5	V	
Gate Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V			100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-48V, V_{GS} =0V			-1	uA	
Forward Transconductance	g _{FS}	V_{DS} =-10V, I_D =-7V		9		S	
Diode Forward Voltage	V_{SD}	I_{SD} =-1A, V_{GS} =0V		-0.76	-1.0	V	
Maximum Body-Diode	l _s				-3	Α	
Continuous Current	'5					, ,	
		Switching		1		1	
Total Gate Charge	Q_g	V - 20V V - 10V		15	19		
Gate-Source Charge	Q_gs	V_{DS} =-30V, V_{GS} =-10V, I_{D} =-7A		2.5		nC	
Gate-Drain Charge	Q_gd			3			
Turn-On Delay Time	t _{d(on)}			8	16		
Turn-On Rise Time	t _r	V_{GS} =-10V, V_{DS} =-30V, R_{L} =10 Ω , R_{GEN} =3 Ω		3.8	7.6	nc	
Turn-Off Delay Time	$t_{d(off)}$			31.5	63	ns	
Turn- Off Rise Time	t _f			7.5	15		
		Dynamic					
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =-30V, f=1MHZ		760			
Output Capacitance	Coss			90		pF	
Reverse Transfer capacitance	Crss			40			

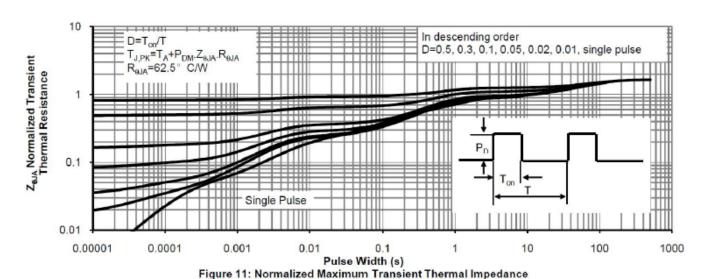
Note:

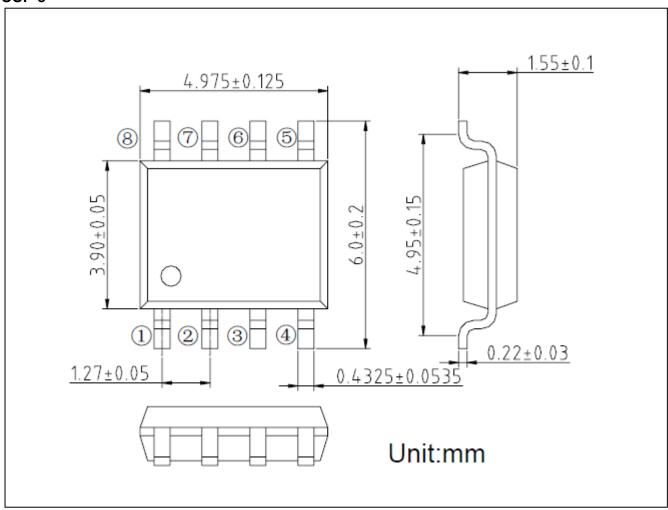
A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.


B: Repetitive rating, pulse width limited by junction temperature.

C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.




Typical Characteristics (P-Channel)



Packing Information

SOP-8

9

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/