

UTC UNISONIC TECHNOLOGIES CO., LTD

LM4811

Preliminary

CMOS IC

DUAL 105mW HEADPHONE AMPLIFIER WITH DIGITAL **VOLUME CONTROL AND** SHUTDOWN MODE

DESCRIPTION

The UTC LM4811 is a dual audio power amplifier with digital volume control and shutdown mode function. It is featured in unity-gain stability. The digital volume control sets the amplifier's gain from +12dB to -33dB in 16 discrete steps using a two-wire interface. The shutdown mode is externally controlled, active-high and micropower consumption. An internal thermal shutdown protection circuit is contained in the device.

Operating on a 5V power supply, it can drive 16Ω load at 105mW per channel of continuous average power with 0.1% (THD+N).

This device is mainly used to provide customers with higher quality output power but less required external components. The UTC LM4811 reduces the use of bootstrap capacitors or snubber networks that make making it ideal for low-power portable systems applications.

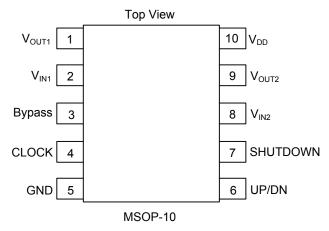
The UTC LM4811 is generally applied in cellular phones, MP3, CD, DVD players, PDA's and other portable electronics.

FEATURES

- * Digital volume control range: +12dB~ -33dB
- * "Click and Pop" suppression circuitry
- * Saving the use of bootstrap capacitors

* Low shutdown current

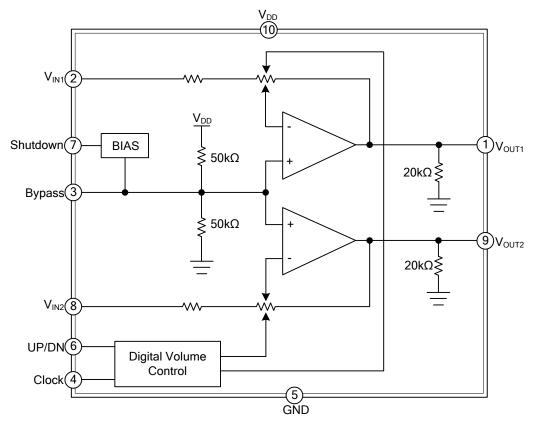
ORDERING INFORMATION


Ordering	Number	Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
LM4811L-SM2-R	LM4811G-SM2-R	MSOP-10	Tape Reel	

LM4811L-SM2-R (1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) SM2: MSOP-10
(3)Lead Free	(3) G: Halogen Free, L: Lead Free

LM4811

PIN CONFIGURATION


PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{OUT1}	Channel 1 output
2	V _{IN1}	Channel 1 audio input
3	Bypass	Connect to internal voltage divider for middle supply bias
4	CLOCK	External clock input for the volume control
5	GND	Ground
6	UP/DN	Volume UP/DOWN control
7	SHUTDOWN	Shutdown mode control input, high active, place LM4811 into shutdown mode, when held high
8	V _{IN2}	Channel 2 audio input
9	V _{OUT2}	Channel 2 output
10	V _{DD}	Supply voltage

LM4811

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (T_c = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{cc}	6.0	V
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ _{JA}	194	°C/W
Junction to Case	θ _{JC}	52	°C/W

OPERATING RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	Vcc	2.0 ~ 5.5	V
Operating Temperature	T _A	-40 ~ 85	°C

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified) (Note 4, 5)

For V _{DD} =5V								
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage		V _{DD}			2.0		5.5	V
Supply Current		I _{DD}	V _{IN} =0V, I _O =0A			1.3	3.0	mA
Shutdown Current		I _{SD}	V _{IN} =0V			0.3		μA
Output Offset Voltage		V _{OS}	V _{IN} =0V			4.0	50	mV
Output Dowor		Po	THD+N=0.1%, f=1kHz	$R_L=16\Omega$		105		mW
	Output Power		1 mD + m = 0.1%, 1 - 1 mZ	R _L =32Ω		70		mW
Total Harmonic Distortion		THD+N	P ₀ =50mW, R _L =32Ω, f=20H	lz∼20kHz		0.3		%
Channel Separation		Crosstalk	R _L =32Ω, f=1kHz, P _O =70mW			100		dB
Power Supply Rejection Ra	tio	PSRR	C _B =1.0µF,V _{RIPPLE} =100mV _{PP} , f=217Hz			60		dB
Input Voltage	High	VIH			1.4			V
(Clock, UP/DN, Shutdown)	Low	VIL					0.4	V
Digital Valuma Danga			Input referred minimum ga	in		-33		dB
Digital Volume Range			Input referred maximum gain			+12		dB
Digital Volume Stepsize	Digital Volume Stepsize		All 16 discrete steps			3.0		dB
Stepsize Error All 16 discrete s		All 16 discrete steps			±0.3		dB	
Channel-to-Channel Volum Tracking Error	e		All gain settings from -33dB ~ +12dB			0.15		dB
Shutdown Attenuation			Shutdown mode active			-100		dB

ELECTRICAL CHARACTERISTICS(Cont.)

For V_{DD}=3.3V

PARAMETER	SYMBOL	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
Supply Current	I _{DD}	V _{IN} =0V, I _O =0A			1.1		mA
Shutdown Current	I _{SD}	V _{IN} =0V			0.3		μA
Output Offset Voltage	V _{OS}	V _{IN} =0V			4.0		mV
Output Power	Po	THD+N=0.1%, f=1kHz	$R_L=16\Omega$		40		mW
	F0	111D+IN=0.170, I=IKI1Z	R _L =32Ω		28		mW
Total Harmonic Distortion	THD+N	P ₀ =25mW, R _L =32Ω, f=20I	Hz~20kHz		0.5		%
Power Supply Rejection Ratio	PSRR	C _B =1.0μF,V _{RIPPLE} =100mV _{PP} , f=217Hz			60		dB
Input Voltage High	V _{IH}			1.4			V
(Clock, UP/DN, Shutdown) Low	V _{IL}					0.4	V
Digital Valuma Banga		Input referred minimum gain Input referred maximum gain			-33		dB
Digital Volume Range					+12		dB
Digital Volume Stepsize		All 16 discrete steps			3.0		dB
Stepsize Error		All 16 discrete steps			±0.3		dB
Channel-to-Channel Volume Tracking Error		All gain settings from -33dB ~ +12dB			0.15		dB
Shutdown Attenuation		Shutdown mode active			-100		dB

For V_{DD}=2.6V

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Current		I _{DD}	V _{IN} =0V, I _O =0A			1.0		mA
Shutdown Current		I _{SD}	V _{IN} =0V			0.3		μA
Output Offset Voltage		Vos	V _{IN} =0V			4.0		mV
		D		$R_L=16\Omega$		20		mW
Output Power		Po	THD+N=0.1%, f=1kHz	R _L =32Ω		16		mW
Total Harmonic Distortion		THD+N	P ₀ =15mW, R _L =32Ω, f=20I	Hz∼20kHz		0.6		%
Power Supply Rejection Ra	atio	PSRR	C _B =1.0µF,V _{RIPPLE} =100mV _{PP} , f=217Hz			60		dB
Input Voltage	High	VIH			1.4			V
(Clock, UP/DN, Shutdown)	Low	VIL					0.4	V
			Input referred minimum gain			-33		dB
Digital Volume Range			Input referred maximum gain			+12		dB
Digital Volume Stepsize			All 16 discrete steps			3.0		dB
Stepsize Error			All 16 discrete steps			±0.3		dB
Channel-to-Channel Volum Tracking Error	ie		All gain settings from -33dB ~ +12dB			0.15		dB
Shutdown Attenuation			Shutdown mode active			-75		dB
Natary A. Alexalyta Mariany		to all a star line	ite hevend which demoge t					

Notes: 4. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.

5. All voltages are measured with respect to the ground pin, unless otherwise specified.

APPLICATION INFORMATION

DIGITAL VOLUME CONTROL

The UTC **LM4811** is dual audio power amplifier with digital volume control and shutdown mode function. The CLOCK pin is drived by an external clock. It's gain is controlled by the signals applied to the CLOCK and UP/DN inputs.

The audio power amplifier's gain is fixed by the signals, which are applied to the CLOCK and UP/DN inputs. The gain is controlled by the logic voltage level applied to the UP/DN pin at each rising edge of the clock signal. At each rising edge of the clock signal, when a logic high voltage level is applying to the UP/DN pin, 3dB is increased, in verse when a logic low voltage is applying to the UP/DN pin, 3dB is decreased on the contrary. For both the CLOCK and UP/DN inputs, the trigger point is 1.4V (MIN.) for a logic high level, and 0.4V (MAX.) for a logic low level.

The UTC LM4811 contains 16 discrete gain settings varying from +12dB (MAX.) to -33dB (MIN.), amplifier's gain is set to a default value of 0dB during power on condition. However, when coming out of shutdown mode, the UTC LM4811 will revert back to its previous gain setting.

In order to avoid undesired state changes during transitions between V_{IL} and V_{IH} , the UTC **LM4811**'s CLOCK and UP/DN pins should be debounced. This will ensure correct operation of the digital volume control. A microcontroller or microprocessor output is expected to drive the CLOCK and UP/DN pins.

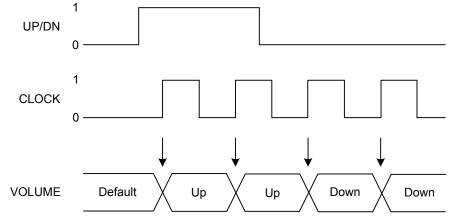


Figure 2. Timing Diagram

POWER SUPPLY BYPASSING

To obtain low noise performance and high power supply rejection, proper supply bypassing is essentially needed for any power amplifier. Capacitor on both the bypass and power supply pins should be placed closely as possible. Bypass capacitor value is also critical as it directly affects the device's half-supply voltage stability and PSRR. The stability and supply rejection increase as the bypass capacitor's value increases. In the typical applications, employing a 5V regulator with 10μ F and a 0.1μ F bypass capacitors which aid in supply stability. This, however, is not saving the need for bypassing the supply nodes of the UTC **LM4811**. The issue of selecting bypass capacitors, especially C_B, is thus dependent upon desired low frequency PSRR, click and pop performance, system cost, and size constraints.

SHUTDOWN FUNCTION

The UTC **LM4811** contains a bias circuitry shutdown to reduce power consumption while not is use. By applying a logic high to the SHUTDOWN pin, the shutdown function is active. For a logic high level, the trigger point is 1.4V (MIN.), and 0.4V (MAX.) for a logic low. For a better shutdown performance, it is best to switch between ground and V_{DD}. By switching the SHUTDOWN pin to V_{DD}, the UTC **LM4811** supply current draw will be minimized in idle mode. Whereas the device will be disabled with shutdown voltages less than V_{DD}, the idle current may be greater than 0.3µA (TYP.). In either case, the SHUTDOWN pin should be tied to a fixed voltage to avoid undesired state changes.

In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry. This provides a quick, smooth shutdown transition. Another solution is to use a single-pole, single-throw switch in conjunction with an external pull-up resistor. When the switch is closed, the SHUTDOWN pin is connected to ground and enables the amplifier. If the switch is open, the external pull-up resistor, R_{PU}, will disable the UTC **LM4811**. This scheme guarantees that the SHUTDOWN pin will not float, thus preventing undesired state changes.

APPLICATION INFORMATION(Cont.)

PROPER SELECTION OF EXTERNAL COMPONENTS

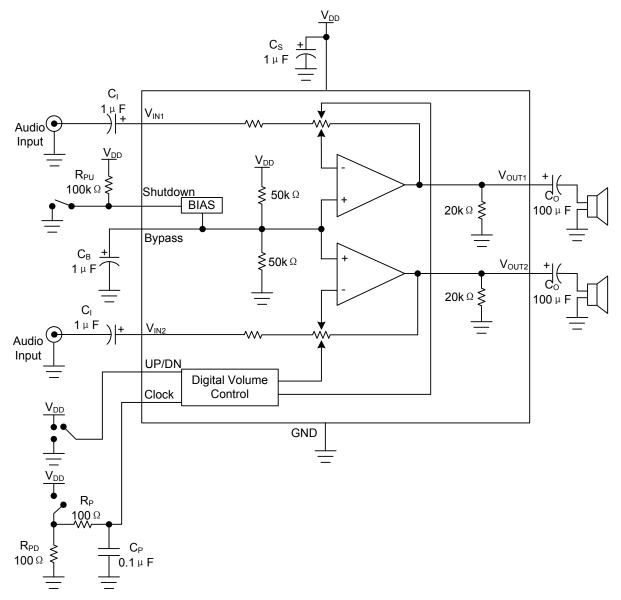
In applications, selection of external components when using integrated power amplifiers is critical for optimum device and system performance. Moreover, the vales of external components are also important to consider as they directly affect the overall system quality. The UTC **LM4811** is tolerant to a variety external component combinations.

The UTC **LM4811** is unity-gain stable, providing designers maximize system performance. Low gain settings maximize signal-to-noise performance and minimizes THD+N. Low gain configurations require large input signals to obtain a given output power. Input signals reach 1Vrms or higher are available from sources such as audio codecs.

SELECTION OF INPUT AND OUTPUT CAPACITOR SIZE

Another consideration is the closed loop bandwidth besides gain. To a large extent, the bandwidth is dicated by the choice of external components shown in Figure 1. Both the C_1 (input coupling capacitor) and the C_0 (output coupling capacitor) form first order high pass filters which limit low frequency response. The values of these capacitors should be based on the desired frequency response weighed against the following:

Large value input and output capacitors are both expensive and space consuming for portable designs. Clearly a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 150Hz. Thus large input and output capacitors may not increase system performance.


Moreover, for the system cost and size, click and pop performance is affected by the size of the C_1 (input coupling capacitor). A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally $1/2 V_{DD}$). This charge comes from the output via the feedback and the pops are apt to be generated upon device enable. Reducing the value of input coupling capacitor can minimize the turn on pops, which is based on necessary low frequency response.

The value of bypass capacitor should be taken into consideration besides minimizing the input and output capacitor values. For minimizing turn on pops, the bypass capacitor C_B plays the most important role, since it determines how fast the UTC **LM4811** turns on. The slower the UTC **LM4811**'s outputs ramp to their quiescent DC voltage (nominally 1/2 V_{DD}), the smaller the turn on pop. While the device will function properly, (no oscillations or motorboating), with C_B equal to 1µF, the device will be much more susceptible to turn on clicks and pops. Thus, a value of C_B equal to 1µF or larger is recommended in all but the most cost sensitive designs.

In addition, the type of capacitors should be given enough consideration since different types of capacitors (tantalum, electrolytic, ceramic) have unique performance characteristics and may affect overall system performance.

TYPICAL APPLICATION CIRCUIT

* Refer to the Application Information Section for information concerning proper selection of the input and output coupling capacitors.

Figure 1. Typical Audio Amplifier Application Circuit

EXTERNAL COMPONENTS DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	Cı	This is the input coupling capacitor. It blocks the DC voltage at, and couples the input signal to, the amplifier's input terminals. C also creates a highpass filter with the internal input resistor, R _I , at f _C =1/($2 \pi R_I C_I$). The minimum value of R _I is 33k Ω . Refer to the section, Proper Selection of External Components , for an explanation of how to determine the value of C _I .
2	Cs	This is the supply bypass capacitor. It provides power supply filtering. Refer to the Application Information section for proper placement and selection of the supply bypass capacitor.
3	C _B	This is the BYPASS pin capacitor. It provides half-supply filtering. Refer to the section, Proper Selection of External Components , for information concerning proper placement and selection of C_B .
4	Co	This is the output coupling capacitor. It blocks the DC voltage at the amplifier's output and it forms a high pass filter with R_L at fO = 1/(2 π R_LC_o)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

