

SBL830 - SBL860

TO-220AC

Min

14.22

9.65

2.54

5.84

12.70

0.51

3.53Ø

3.56

1.14

0.30

2.03

4.83

Max

15.88

10.67

3.43

6.86

6.35

14.73

1.14

4.09Ø

4.83

1.40

0.64

2.92

5.33

Dim

Α

в

С

D

Ε

G

J

κ

L

Μ

Ν

Ρ

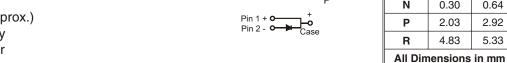
R

8.0A SCHOTTKY BARRIER RECTIFIER

Μ

D

Е


A

Features

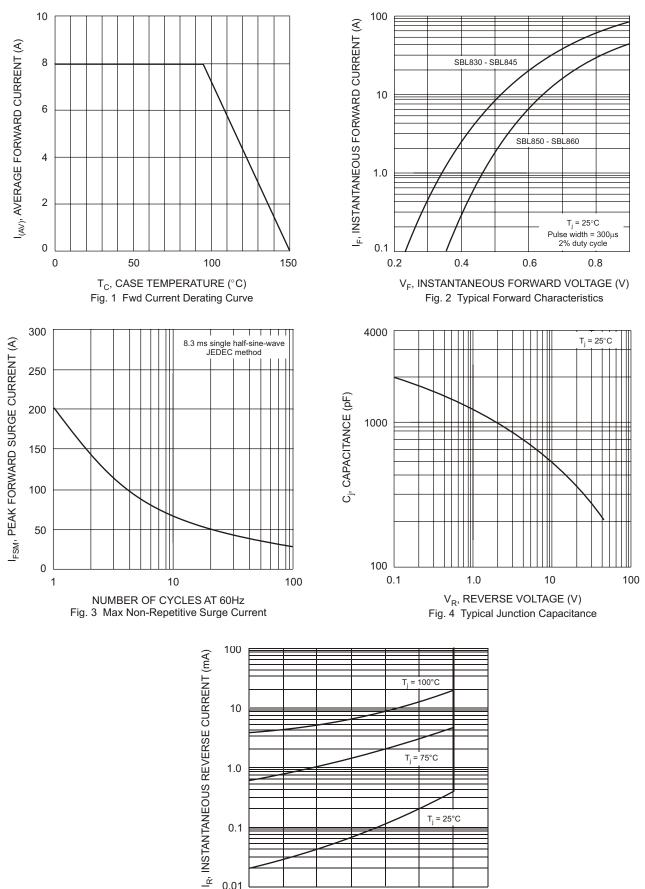
- . Schottky Barrier Chip
- **Guard Ring for Transient Protection** •
- Low Power Loss, High Efficiency
- High Current Capability, Low VF
- High Surge Capability
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity **Protection Applications**
- Plastic Material: UL Flammability Classification Rating 94V-0

Mechanical Data

- **Case: Molded Plastic** .
- Terminals: Plated Leads, Solderable per • MIL-STD-202, Method 208
- Polarity: See Diagram
- Weight: 2.3 grams (approx.)
- Mounting Position: Any
- Marking: Type Number

R

Maximum Ratings and Electrical Characteristics @ $T_A = 25^{\circ}C$ unless otherwise specified


Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	SBL 830	SBL 835	SBL 840	SBL 845	SBL 850	SBL 860	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	35	40	45	50	60	V
RMS Reverse Voltage	V _{R(RMS)}	21	24.5	28	31.5	35	42	V
Average Rectified Output Current (Note 1) (Note 1) ($T_C = 95^{\circ}C$	lo	8						А
Non-Repetitive Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM}	200						А
Forward Voltage $@$ I _F = 8A, T _C = 25°C	V _{FM}	0.55 0.70					70	V
Peak Reverse Current $@T_C = 25^{\circ}C$ at Rated DC Blocking Voltage $@T_C = 100^{\circ}C$		0.5 50						mA
Typical Junction Capacitance (Note 2)	Cj	700						pF
Typical Thermal Resistance Junction to Case (Note 1)	R _{0JC}	6.9						°C/W
Operating and Storage Temperature Range	T _{j,} T _{STG}	-65 to +150						°C

1. Thermal resistance junction to case mounted on heatsink. Notes:

2. Measured at 1.0MHz and Applied Reverse Voltage of 4.0V DC.

40

80

PERCENT OF RATED PEAK REVERSE VOLTAGE (%) Fig. 5 Typical Reverse Characteristics

120

0.01 L 0