# FAIRCHILD

SEMICONDUCTOR

# FQD11P06 / FQU11P06 **60V P-Channel MOSFET**

## **General Description**

These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

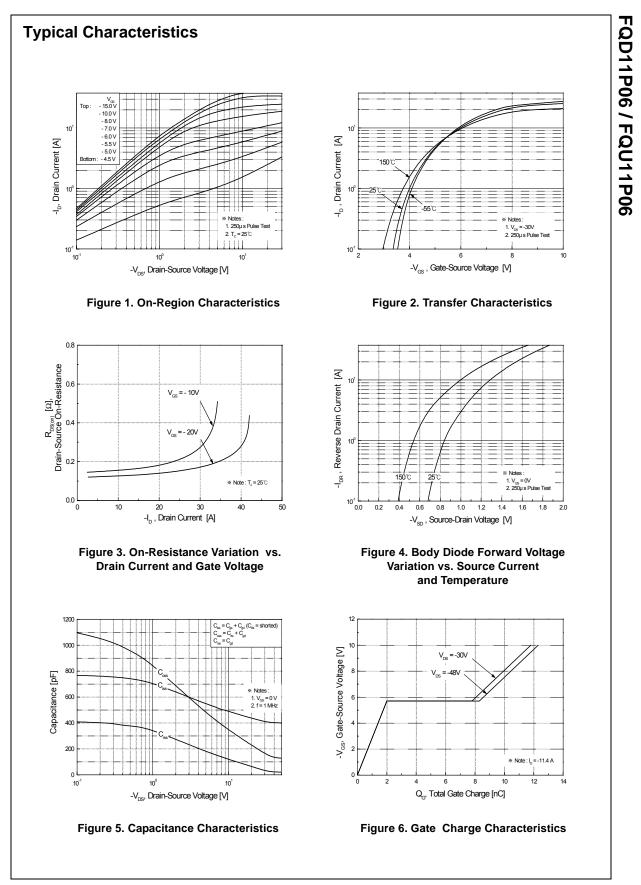
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for low voltage applications such as automotive, DC/DC converters, and high efficiency switching for power management in portable and battery operated products.

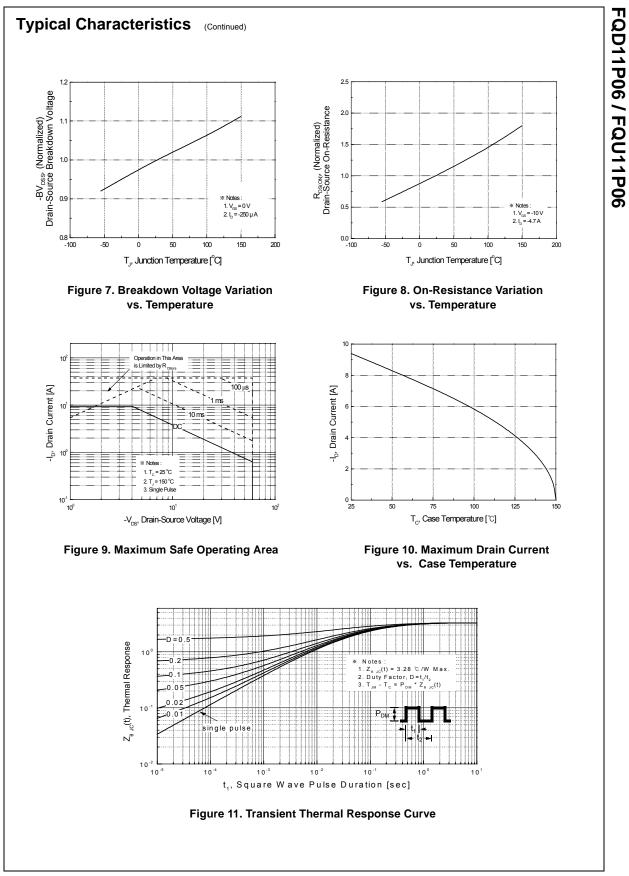
#### Features

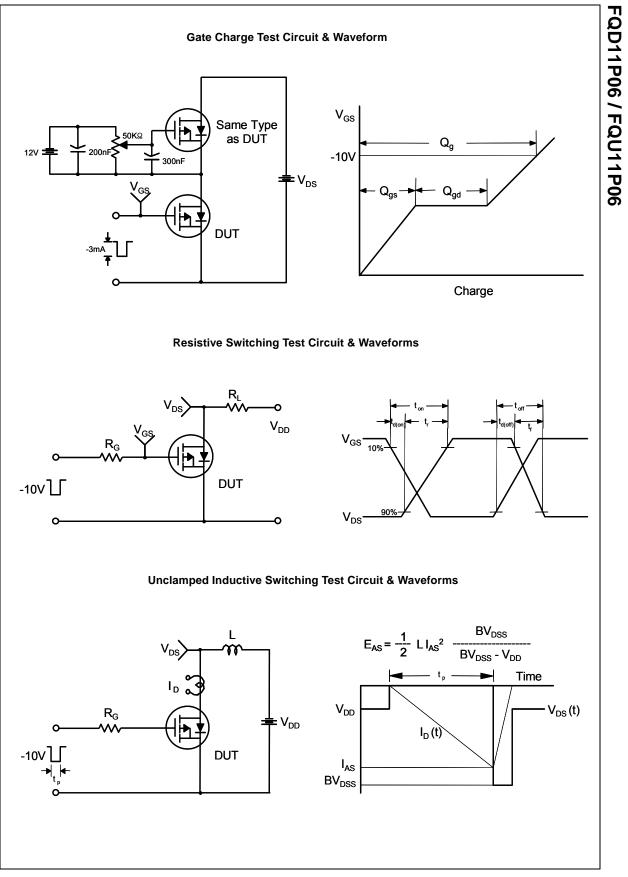
- -9.4A, -60V, R<sub>DS(on)</sub> = 0.185Ω @V<sub>GS</sub> = -10 V
   Low gate charge ( typical 13 nC)
- Low Crss (typical 45 pF) •
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- S D Go I-PAK D-PAK FQD Series FQU Series GDS

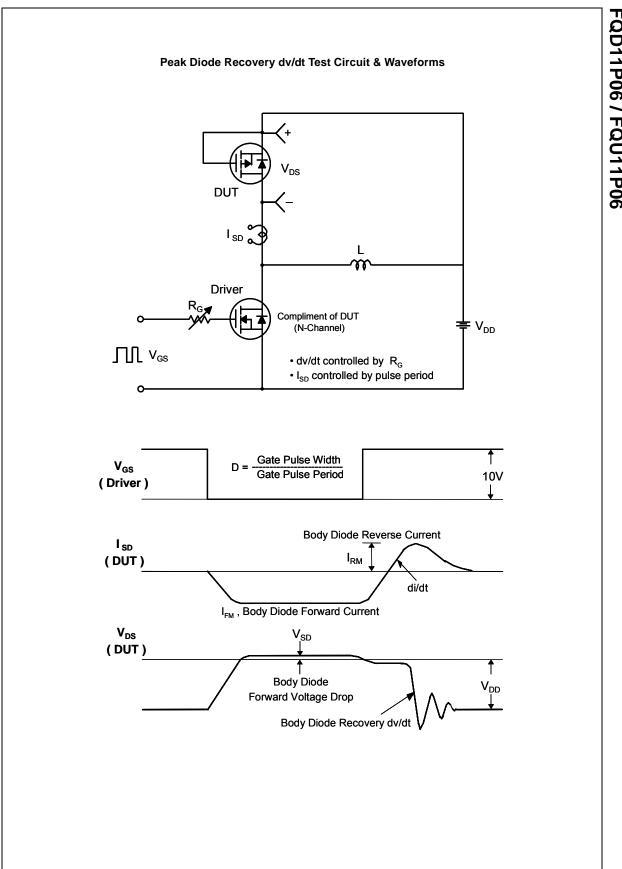
# Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                                        |          | FQD11P06 / FQU11P06 | Units |
|-----------------------------------|----------------------------------------------------------------------------------|----------|---------------------|-------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                             |          | -60                 | V     |
| I <sub>D</sub>                    | Drain Current - Continuous ( $T_C = 25^{\circ}C$ )                               |          | -9.4                | А     |
|                                   | - Continuous (T <sub>C</sub> = 100                                               | -5.95    | А                   |       |
| I <sub>DM</sub>                   | Drain Current - Pulsed                                                           | (Note 1) | -37.6               | А     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                              |          | ± 30                | V     |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2)                                          |          | 160                 | mJ    |
| I <sub>AR</sub>                   | Avalanche Current                                                                | (Note 1) | -9.4                | А     |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                                                      | (Note 1) | 3.8                 | mJ    |
| dv/dt                             | Peak Diode Recovery dv/dt                                                        | (Note 3) | -7.0                | V/ns  |
| PD                                | Power Dissipation (T <sub>A</sub> = 25°C) *                                      |          | 2.5                 | W     |
|                                   | Power Dissipation ( $T_C = 25^{\circ}C$ )                                        |          | 38                  | W     |
|                                   | - Derate above 25°C                                                              | 0.3      | W/°C                |       |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                          |          | -55 to +150         | °C    |
| TL                                | Maximum lead temperature for soldering purposes,<br>1/8" from case for 5 seconds |          | 300                 | °C    |

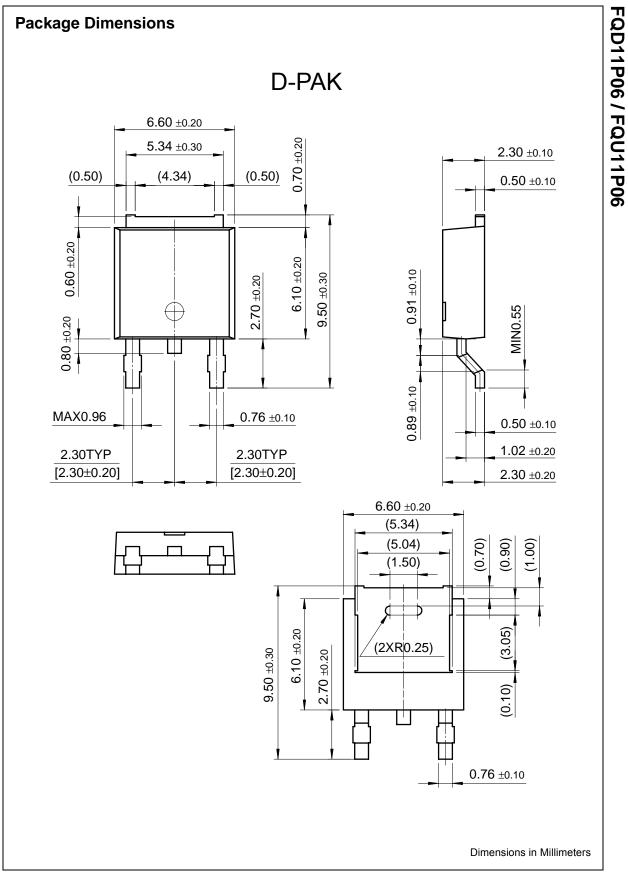

# **Thermal Characteristics**

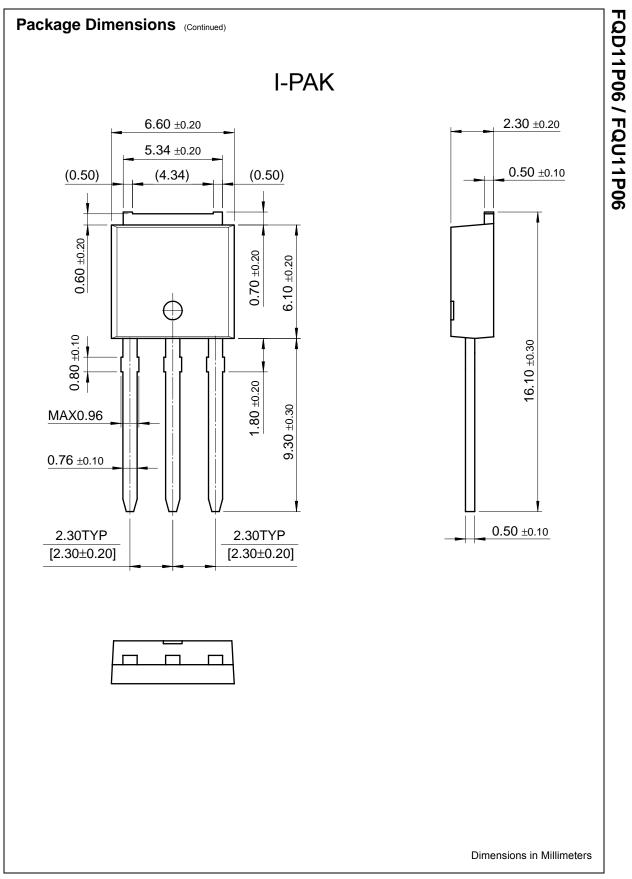

| Symbol           | Parameter                                 | Тур | Max  | Units |
|------------------|-------------------------------------------|-----|------|-------|
| $R_{\theta JC}$  | Thermal Resistance, Junction-to-Case      |     | 3.28 | °C/W  |
| $R_{\theta JA}$  | Thermal Resistance, Junction-to-Ambient * |     | 50   | °C/W  |
| R <sub>θJA</sub> | Thermal Resistance, Junction-to-Ambient   |     | 110  | °C/W  |


©2004 Fairchild Semiconductor Corporation


FET®

| Symbol                                                                                                                                                                               | Parameter                                                                                                                                                                                                                 | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min  | Тур               | Max                           | Units                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-------------------------------|-------------------------|
| Off Cha                                                                                                                                                                              | racteristics                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   |                               |                         |
| BV <sub>DSS</sub>                                                                                                                                                                    | Drain-Source Breakdown Voltage                                                                                                                                                                                            | V <sub>GS</sub> = 0 V, I <sub>D</sub> = -250 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -60  |                   |                               | V                       |
| ΔBV <sub>DSS</sub><br>/ ΔT <sub>J</sub>                                                                                                                                              | Breakdown Voltage Temperature<br>Coefficient                                                                                                                                                                              | $I_D = -250 \ \mu\text{A}$ , Referenced to 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | -0.07             |                               | V/°C                    |
| DSS                                                                                                                                                                                  |                                                                                                                                                                                                                           | V <sub>DS</sub> = -60 V, V <sub>GS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                   | -1                            | μA                      |
|                                                                                                                                                                                      | Zero Gate Voltage Drain Current                                                                                                                                                                                           | V <sub>DS</sub> = -48 V, T <sub>C</sub> = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   | -10                           | μA                      |
| GSSF                                                                                                                                                                                 | Gate-Body Leakage Current, Forward                                                                                                                                                                                        | $V_{GS}$ = -25 V, $V_{DS}$ = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                   | -100                          | nA                      |
| GSSR                                                                                                                                                                                 | Gate-Body Leakage Current, Reverse                                                                                                                                                                                        | $V_{GS} = 25 V, V_{DS} = 0 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                   | 100                           | nA                      |
| On Cha                                                                                                                                                                               | racteristics                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   |                               |                         |
| V <sub>GS(th)</sub>                                                                                                                                                                  | Gate Threshold Voltage                                                                                                                                                                                                    | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = -250 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.0 |                   | -4.0                          | V                       |
| R <sub>DS(on)</sub>                                                                                                                                                                  | Static Drain-Source<br>On-Resistance                                                                                                                                                                                      | V <sub>GS</sub> = -10 V, I <sub>D</sub> = -4.7 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 0.15              | 0.185                         | Ω                       |
| 9 <sub>FS</sub>                                                                                                                                                                      | Forward Transconductance                                                                                                                                                                                                  | V <sub>DS</sub> = -30 V, I <sub>D</sub> = -4.7 A (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 4.9               |                               | S                       |
| Dynam<br>C <sub>iss</sub>                                                                                                                                                            | ic Characteristics                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 420               | 550                           | ~F                      |
|                                                                                                                                                                                      | Output Capacitance                                                                                                                                                                                                        | $V_{DS} = -25 V, V_{GS} = 0 V,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 420<br>195        | 550                           | pF                      |
| C <sub>oss</sub><br>C <sub>rss</sub>                                                                                                                                                 | Reverse Transfer Capacitance                                                                                                                                                                                              | f = 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 45                | 250<br>60                     | pF<br>pF                |
| d(on)                                                                                                                                                                                | Turn-On Delay Time                                                                                                                                                                                                        | V <sub>DD</sub> = -30 V, I <sub>D</sub> = -5.7 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 6.5<br>40         | 25<br>90                      | ns<br>ns                |
| r                                                                                                                                                                                    | Turn-On Rise Time                                                                                                                                                                                                         | $R_G = 25 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -    | 40                | 90                            | ns                      |
| 1/ . (7)                                                                                                                                                                             | Turn-Off Delay Time                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 15                | 40                            | ns                      |
|                                                                                                                                                                                      | Turn-Off Fall Time                                                                                                                                                                                                        | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 45                | 100                           | ns                      |
| f                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 13                | 17                            | nC                      |
| f<br>Qg                                                                                                                                                                              | Total Gate Charge                                                                                                                                                                                                         | V <sub>DS</sub> = -48 V, I <sub>D</sub> = -11.4 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                   |                               | <u> </u>                |
| f<br>Qg                                                                                                                                                                              | Total Gate Charge<br>Gate-Source Charge                                                                                                                                                                                   | V <sub>DS</sub> = -48 V, I <sub>D</sub> = -11.4 A,<br>V <sub>GS</sub> = -10 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 2.0               |                               | nC                      |
| f<br>Q <sub>g</sub><br>Q <sub>gs</sub>                                                                                                                                               | -                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 2.0<br>6.3        |                               | nC<br>nC                |
| f<br>Ձց<br>Ձցց<br>Ձցց                                                                                                                                                                | Gate-Source Charge                                                                                                                                                                                                        | V <sub>GS</sub> = -10 V (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                               |                         |
| f<br>ຊ <sub>g</sub><br>ຊ <sub>gs</sub><br>ຊ <sub>gd</sub><br>Drain-S                                                                                                                 | Gate-Source Charge<br>Gate-Drain Charge                                                                                                                                                                                   | V <sub>GS</sub> = -10 V (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                               |                         |
| <sup>id</sup> (off)<br>Դց<br>Չց<br>Չցց<br>Ձցց<br>Drain-S                                                                                                                             | Gate-Source Charge<br>Gate-Drain Charge<br>ource Diode Characteristics a                                                                                                                                                  | V <sub>GS</sub> = -10 V<br>(Note 4, 5)<br><b>nd Maximum Ratings</b><br>ode Forward Current<br>Forward Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 6.3               |                               | nC                      |
| ີ່<br>ຊ <sub>g</sub><br>ຊ <sub>gs</sub><br>ຊ <sub>gd</sub><br>Drain-S                                                                                                                | Gate-Source Charge<br>Gate-Drain Charge<br>Source Diode Characteristics an<br>Maximum Continuous Drain-Source Dio                                                                                                         | V <sub>GS</sub> = -10 V<br>(Note 4, 5)<br><b>nd Maximum Ratings</b><br>ode Forward Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 6.3               |                               | nC<br>A                 |
| f<br>Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub><br>Drain-S<br>S<br>S<br>M<br>/ <sub>SD</sub><br>rr                                                                         | Gate-Source Charge<br>Gate-Drain Charge<br>Source Diode Characteristics au<br>Maximum Continuous Drain-Source Dio<br>Maximum Pulsed Drain-Source Diode F                                                                  | $V_{GS} = -10 V$ (Note 4, 5) |      | 6.3<br><br>       | <br>-9.4<br>-37.6             | nC<br>A<br>A            |
| f<br>Qg<br>Qgs<br>Drain-S<br>S<br>SM<br>/SD<br>r                                                                                                                                     | Gate-Source Charge<br>Gate-Drain Charge<br>Cource Diode Characteristics an<br>Maximum Continuous Drain-Source Diode<br>Maximum Pulsed Drain-Source Diode F<br>Drain-Source Diode Forward Voltage<br>Reverse Recovery Time | $V_{GS} = -10 V$ (Note 4, 5) |      | 6.3<br><br><br>83 | <br>-9.4<br>-37.6<br>-4.0<br> | nC<br>A<br>A<br>V<br>ns |
| f<br>Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub><br>Drain-S<br>S<br>S<br>S<br>M<br>V <sub>SD</sub><br>V <sub>SD</sub><br>Q <sub>rr</sub><br>Q <sub>rr</sub><br>Repetitive R | Gate-Source Charge<br>Gate-Drain Charge<br>Cource Diode Characteristics an<br>Maximum Continuous Drain-Source Diode<br>Maximum Pulsed Drain-Source Diode F<br>Drain-Source Diode Forward Voltage                          | $V_{GS} = -10 V$ (Note 4, 5) (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 6.3<br><br>       | <br>-9.4<br>-37.6<br>-4.0     | nC<br>A<br>A<br>V       |








FQD11P06 / FQU11P06





#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                | FAST <sup>®</sup>              | ISOPLANAR™             | Power247™                    | SuperFET™              |
|----------------------|--------------------------------|------------------------|------------------------------|------------------------|
| ActiveArray™         | FASTr™                         | LittleFET™             | PowerSaver™                  | SuperSOT™-3            |
| Bottomless™          | FPS™                           | MICROCOUPLER™          | PowerTrench <sup>®</sup>     | SuperSOT™-6            |
| CoolFET™             | FRFET™                         | MicroFET™              | QFET <sup>®</sup>            | SuperSOT™-8            |
| CROSSVOLT™           | GlobalOptoisolator™            | MicroPak™              | QS™                          | SyncFET™               |
| DOME™                | GTO™                           | MICROWIRE™             | QT Optoelectronics™          | TinyLogic <sup>®</sup> |
| EcoSPARK™            | HiSeC™                         | MSX™                   | Quiet Series™                | TINYOPTO™              |
| E <sup>2</sup> CMOS™ | I <sup>2</sup> C™              | MSXPro™                | RapidConfigure™              | TruTranslation™        |
| EnSigna™             | <i>i-Lo</i> ™                  | OCX™                   | RapidConnect™                | UHC™                   |
| FACT™                | ImpliedDisconnect <sup>™</sup> | OCXPro™                | µSerDes™                     | UltraFET <sup>®</sup>  |
| FACT Quiet Series™   | 1                              | OPTOLOGIC <sup>®</sup> | SILENT SWITCHER <sup>®</sup> | VCX™                   |
| Across the board. Ar | ound the world.™               | OPTOPLANAR™            | SMART START™                 |                        |
| The Power Franchise  | e®                             | PACMAN™                | SPM™                         |                        |
| Programmable Active  | e Droop™                       | POP™                   | Stealth™                     |                        |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

# **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                                |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |



BUY

Datasheet

datasheet

PDF

**≣**- **'** 

Download this

Home >> Find products >>

FQD11P06 60V P-Channel QFET

Contents •General description

•Qu

•Features

Qualification Support

- •Product status/pricing/packaging
- •Order Samples

### **General description**

These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for low voltage applications such as automotive, DC/ DC converters, and high efficiency switching for power management in portable and battery operated products.

#### back to top

#### Features

- -9.4A, -60V, R<sub>DS(on)</sub> = 0.185Ω @V<sub>GS</sub> = -10V
- Low gate charge (typical 13nC)
- Low Crss (typical 45pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

#### back to top

Product status/pricing/packaging



## **Related Links**

Request samples

How to order products

\_\_\_\_

Product Change Notices (PCNs)

<u>\_\_\_\_</u>

Support

Sales support

Quality and reliability

Design center

This page Print version

e-mail this datasheet

| Product            | Product status  | Pb-free Status     | Pricing* | Package type        | Leads | Packing method | Package Marking Convention**                                                                                                       |
|--------------------|-----------------|--------------------|----------|---------------------|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| FQD11P06TF         | Full Production | Full<br>Production | \$0.65   | <u>TO-252(DPAK)</u> | 2     | TAPE REEL      | Line 1: <b>\$Y</b> (Fairchild logo)<br>& <b>Z</b> (Asm. Plant Code)<br>& <b>4</b> (4-Digit Date Code)<br>Line 2: FQD Line 3: 11P06 |
| FQD11P06TM         | Full Production | Full<br>Production | \$0.65   | <u>TO-252(DPAK)</u> | 2     | TAPE REEL      | Line 1: <b>\$Y</b> (Fairchild logo)<br>& <b>Z</b> (Asm. Plant Code)<br>& <b>4</b> (4-Digit Date Code)<br>Line 2: FQD Line 3: 11P06 |
| FQD11P06TM_SB82077 | Full Production | Full<br>Production | N/A      | <u>TO-252(DPAK)</u> | 2     | TAPE REEL      | Line 1: <b>\$Y</b> (Fairchild logo)<br>& <b>Z</b> (Asm. Plant Code)<br>& <b>4</b> (4-Digit Date Code)<br>Line 2: FQD Line 3: 11P06 |

\* Fairchild 1,000 piece Budgetary Pricing \*\* A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FQD11P06 is available. <u>Click here for more information</u>.

# back to top

(7

# **Qualification Support**

Click on a product for detailed qualification data

| Product            |
|--------------------|
| FQD11P06TF         |
| FQD11P06TM         |
| FQD11P06TM_SB82077 |

back to top

# © 2007 Fairchild Semiconductor



Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (