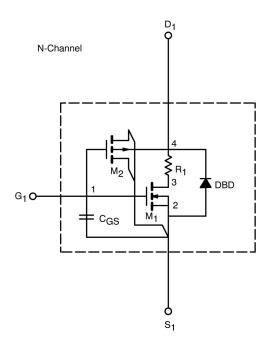
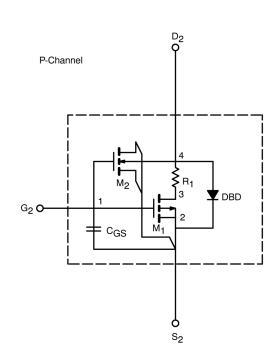


N- and P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The model subcircuit schematic is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

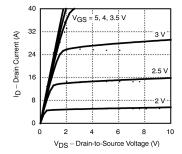
Document Number: 70568 www.vishay.com 05-Nov-99 1

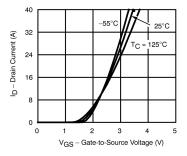
SPICE Device Model 9928DY

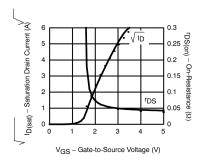
Vishay Siliconix

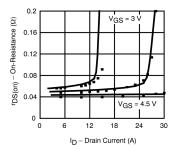
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition		Typical ^a	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V$, V_{GS} , $I_D = 250 \mu A$	N-Ch		
	V GS(th)	V_{DS} = V , V_{GS} , I_D = $-250 \mu A$	P-Ch		
On-State Drain Current ^b		$V_{DS} V, V_{GS} = V$	N-Ch		A
	I _{D(on)}	$V_{DS} = -V$, $V_{GS} = -V$	P-Ch		
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	N-Ch	0.044	Ω
		V_{GS} = -4.5 V, I_D = -3.2 A	P-Ch	.056	
		$V_{GS} = 3.0 \text{ V}, I_D = 3.9 \text{ A}$	N-Ch	0.051	
	r _{DS(on)}	$V_{GS} = -3.0 \text{ V}, I_D = -2.0 \text{ A}$	P-Ch	0.084	
		$V_{GS} = 2.5 \text{ V}, I_D = 1 \text{ A}$	P-Ch	0.056	
		$V_{GS} = -2.7V$, $I_D = -1$ A	P-Ch	0.096	
Forward Transconductance ^b		$V_{DS} = 10 \text{ V}, I_{D} = 5 \text{ A}$	N-Ch	15	s
	g _{fs}	$V_{DS} = -9 \text{ V}, I_{D} = -3.4 \text{ A}$	P-Ch	9.3	
Diode Forward Voltage ^b	.,	$I_{S} = 5 A, V_{GS} = 0 V$	N-Ch	0.84	V
	V _{SD}	$I_{S} = -2 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	P-Ch	-0.74	
Dynamic ^a					
Total Gate Charge			N-Ch	8	
	Q_g	N-Channel	P-Ch	8.9	
Gate-Source Charge		$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	N-Ch	2	
	Q_{gs}	P-Channel $V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -3.2 \text{ A}$	2.1	nC	
Gate-Drain Charge			N-Ch	2.4	-
	Q_{gd}		P-Ch	3.3	
Turn-On Delay Time			N-Ch	24	
	t _{d(on)}		P-Ch	12	
		N-Channel	N-Ch	19	
Rise Time		V_{DD} =6 V , R_L = 6 Ω	P-Ch	19	ns
	t _r	$I_D\cong$ 1 A, V_{GEN} = 4.5 V, R_G = 6 Ω	N-Ch	30	
Turn-Off Delay Time	,	P-Channel $V_{DD} = -6 \text{ V}, R_1 = 6 \Omega$	P-Ch	46	
	$t_{d(off)}$	$I_D \cong -1$ A, $V_{GEN} = -4.5$ V, $R_G = 6$ Ω	N-Ch	13	
Fall Time			P-Ch	60	
	t _f		N-Ch	64	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = A, I _S = 1.25A, di/dt = 100 A/μs	P-Ch	53	1

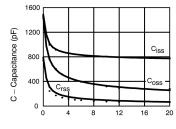
a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%.

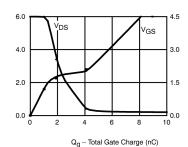

Document Number: 70568 05-Nov-99



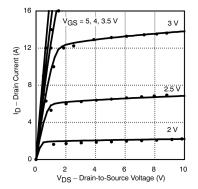

Vishay Siliconix

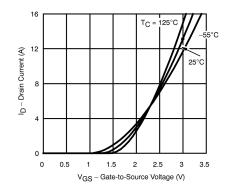

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

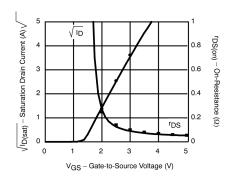

N-Channel

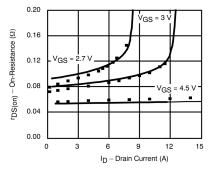


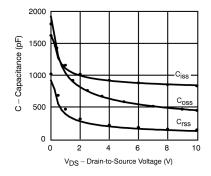
 $V_{\mbox{DS}}$ – Drain-to-Source Voltage (V)

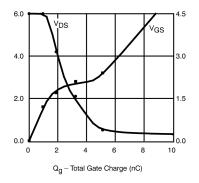

Note: Dots and squares represent measured data.


Document Number: 70568 www.vishay.com 05-Nov-99 3


Vishay Siliconix







Note: Dots and squares represent measured data.

www.vishay.com Document Number: 70568
4 05-Nov-99