Silicon PIN diode

FEATURES

BAP63-03

- High speed switching for RF signals
- Low diode capacitance
- Low diode forward resistance

Very low series inductance
For applications up to 3 GHz .

APPLICATIONS

RF attenuators and switches.

DESCRIPTION

Planar PIN diode in a SOD323 small SMD plastic package.

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{R}	continuous reverse voltage		-	50	V
I_{F}	continuous forward current		-	100	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{s}} \leq 90^{\circ} \mathrm{C}$	-	500	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-65	+150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {F }}$	forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	0.95	1.1	V
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=35 \mathrm{~V}$	-	10	nA
$\mathrm{C}_{\text {d }}$	diode capacitance	$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$	0.4	-	pF
		$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	0.35	-	pF
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	0.27	0.32	pF
r_{D}	diode forward resistance	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{f}=100 \mathrm{MHz}$; note 1	2.5	3.5	Ω
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} ; \mathrm{f}=100 \mathrm{MHz}$; note 1	1.95	3	Ω
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=100 \mathrm{MHz}$; note 1	1.17	1.8	Ω
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{f}=100 \mathrm{MHz}$; note 1	0.9	1.5	Ω
$\left\|S_{21}\right\|^{2}$	isolation	$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=900 \mathrm{MHz}$	15.4	-	dB
		$V_{R}=0 ; f=1800 \mathrm{MHz}$	10.1	-	dB
		$V_{R}=0 ; f=2450 \mathrm{MHz}$	7.8	-	dB
$\left\|S_{21}\right\|^{2}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; f=900 \mathrm{MHz}$	0.21	-	dB
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{f}=1800 \mathrm{MHz}$	0.28	-	dB
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{f}=2450 \mathrm{MHz}$	0.38	-	dB
$\left\|S_{21}\right\|^{2}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} ; \mathrm{f}=900 \mathrm{MHz}$	0.18	-	dB
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} ; \mathrm{f}=1800 \mathrm{MHz}$	0.26	-	dB
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} ; \mathrm{f}=2450 \mathrm{MHz}$	0.35	-	dB
$\left\|S_{21}\right\|^{2}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=900 \mathrm{MHz}$	0.13	-	dB
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=1800 \mathrm{MHz}$	0.20	-	dB
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=2450 \mathrm{MHz}$	0.30	-	dB
$\left\|S_{21}\right\|^{2}$	insertion loss	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{f}=900 \mathrm{MHz}$	0.10	-	dB
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; f=1800 \mathrm{MHz}$	0.18	-	dB
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{f}=2450 \mathrm{MHz}$	0.28	-	dB

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified. (Continue)

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
τ_{L}	charge carrier life time	when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=6 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$ measured at $\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$	310	-	ns
				1.5	-
L_{s}	series inductance		nH		

Note

1. Guaranteed on AQL basis: inspection level S4, AQL 1.0.

THERMALCHARACTERISTICS

| SYMBOL | PARAMETER | VALUE | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $R_{\text {th } j \text {-s }}$ | thermal resistance from junction to soldering-point | 120 | KW |

Fig. 1 Forward resistance as a function of forward current; typical values.

Fig. 3 Insertion loss ($\left|\mathbf{s}_{21}\right|^{2}$) of the diode in on-state as a function of frequency; typical values.

Fig. 2 Diode capacitance as a function of reverse voltage; typical values.

Fig. 4 Isolation $\left(\left|s_{21}\right|^{2}\right)$ of the diode in off-state as a function of frequency; typical values.

