Document Title

512Kx72-Bit Pipelined NtRAM™

Revision History

Rev. No.	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>
0.0	 Initial document. Speed bin merge. From K7N327249M to K7N327245M AC parameter change. tOH(min)/tLZC(min) from 0.8 to 1.5 at -25 tOH(min)/tLZC(min) from 1.0 to 1.5 at -22 tOH(min)/tLZC(min) from 1.0 to 1.5 at -20 	May. 10. 2001	Preliminary
0.1		Dec. 31. 2001	Preliminary

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

32Mb NtRAM(Flow Through / Pipelined) , Double Late Write RAM x72 Ordering Information

Org.	Part Number	Mode	VDD	Speed FT ; Access Time(ns) Pipelined ; Cycle Time(MHz)	PKG	Temp
	K7M321825M-Q(H/F)C65/75/85	FlowThrough	3.3	6.5/7.5/8.5ns		
2Mx18	K7N321801M-Q(H/F)C25/22/20/16/15/13	Pipelined	3.3	250/225/200/167/150/133MHz		
	K7N321845M-Q(H/F)C25/22/20/16/15/13	Pipelined	2.5	250/225/200/167/150/133MHz	Q:100TQFP H:119BGA	
	K7M323625M-Q(H/F)C65/75/85	FlowThrough	3.3	6.5/7.5/8.5ns	F:165FBGA	
1Mx36	K7N323601M-Q(H/F)C25/22/20/16/15/13	Pipelined	3.3	250/225/200/167/150/133MHz		
	K7N323645M-Q(H/F)C25/22/20/16/15/13	Pipelined	2.5	250/225/200/167/150/133MHz		
510Kv70	K7N327245M-HC25/22/20/16/15/13	Pipelined (Normal Type)	2.5	250/225/200/167/150/133MHz	H : 209BGA	Range)
512Kx72	K7Z327285M-HC27/25	Pipelined (Sigma Type)	1.8	275/250MHz		

512Kx72-Bit Pipelined NtRAM™

FEATURES

- 2.5V ±5% Power Supply.
- Byte Writable Function.
- Enable clock and suspend operation.
- Single READ/WRITE control pin.
- Self-Timed Write Cycle.
- Three Chip Enable for simple depth expansion with no data contention.
- A interleaved burst or a linear burst mode.
- Asynchronous output enable control.
- Power Down mode.
- TTL-Level Three-State Outputs.
- 209BGA(11x19 Ball Grid Array Package).

FAST ACCESS TIMES

PARAMETER	Symbol	-25	-22	-20	-16	-15	-13	Unit
Cycle Time	tCYC	4.0	4.4	5.0	6.0	6.7	7.5	ns
Clock Access Time	tCD	2.6	2.8	3.2	3.5	3.8	4.2	ns
Output Enable Access Time	tOE	2.6	2.8	3.2	3.5	3.8	4.2	ns

GENERAL DESCRIPTION

The K7N327245M is 37,748,736-bits Synchronous Static SRAMs.

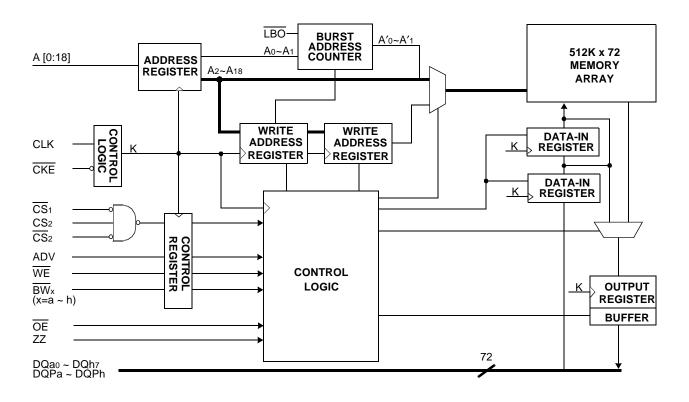
The NtRAM™, or No Turnaround Random Access Memory utilizes all the bandwidth in any combination of operating cycles.

Address, data inputs, and all control signals except output enable and linear burst order are synchronized to input clock.

Burst order control must be tied "High or Low".

Asynchronous inputs include the sleep mode enable(ZZ).

Output Enable controls the outputs at any given time.


Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation

and provides increased timing flexibility for incoming signals.

For read cycles, pipelined SRAM output data is temporarily stored by an edge triggered output register and then released to the output buffers at the next rising edge of clock.

The K7N327245M are implemented with SAMSUNG's high performance CMOS technology and is available in 209BGA packages. Multiple power and ground pins minimize ground bounce.

LOGIC BLOCK DIAGRAM

209BGA PACKAGE PIN CONFIGURATIONS(TOP VIEW)

K7N327245M(512K x 72)

	1	2	3	4	5	6	7	8	9	10	11
Α	DQg	DQg	Α	CS ₂	Α	ADV	Α	CS ₂	Α	DQb	DQb
В	DQg	DQg	BWc	BWg	NC	\overline{WE}	Α	BWb	BWf	DQb	DQb
С	DQg	DQg	BWh	BWd	NC	CS ₁	NC	BWe	BWa	DQb	DQb
D	DQg	DQg	Vss	NC	NC	OE	NC	NC	Vss	DQb	DQb
E	DQPg	DQPc	VDDQ	VDDQ	VDD	VDD	VDD	VDDQ	VDDQ	DQPf	DQPb
F	DQc	DQc	Vss	Vss	Vss	NC	Vss	Vss	Vss	DQf	DQf
G	DQc	DQc	VDDQ	VDDQ	VDD	NC	VDD	VDDQ	VDDQ	DQf	DQf
Н	DQc	DQc	Vss	Vss	Vss	NC	Vss	Vss	Vss	DQf	DQf
J	DQc	DQc	VDDQ	VDDQ	VDD	NC	VDD	VDDQ	VDDQ	DQf	DQf
K	NC	NC	CLK	NC	Vss	CKE	Vss	NC	NC	NC	NC
L	DQh	DQh	VDDQ	VDDQ	VDD	NC	VDD	VDDQ	VDDQ	DQa	DQa
М	DQh	DQh	Vss	Vss	Vss	NC	Vss	Vss	Vss	DQa	DQa
N	DQh	DQh	VDDQ	VDDQ	VDD	NC	VDD	VDDQ	VDDQ	DQa	DQa
Р	DQh	DQh	Vss	Vss	Vss	ZZ	Vss	Vss	Vss	DQa	DQa
R	DQPd	DQPh	VDDQ	VDDQ	VDD	Vdd	VDD	VDDQ	Vddq	DQPa	DQPe
Т	DQd	DQd	Vss	NC	NC	LBO	NC	NC	Vss	DQe	DQe
U	DQd	DQd	NC	Α	NC(64M)	Α	Α	А	NC	DQe	DQe
٧	DQd	DQd	Α	Α	Α	A1**	Α	А	Α	DQe	DQe
W	DQd	DQd	TMS	TDI	А	A0**	Α	TDO	TCK	DQe	DQe

Notes: 1. ** Ao and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

PIN NAME

SYMBOL	PIN NAME	SYMBOL	PIN NAME
Α	Address Inputs	VDD	Power Supply
	•	Vss	Ground
A0,A1	Burst Address Inputs		
ADV	Address Advance/Load	N.C.	No Connect
WE	Read/Write Control Input		
CLK	Clock	DQa	Data Inputs/Outputs
CKE	Clock Enable	DQb	Data Inputs/Outputs
CS ₁	Chip Select	DQc	Data Inputs/Outputs
<u>CS</u> ₂ <u>CS</u> ₂	Chip Select	DQd	Data Inputs/Outputs
CS ₂	Chip Select	DQe	Data Inputs/Outputs
BWx	Byte Write Inputs	DQf	Data Inputs/Outputs
(x=a~h)		DQg	Data Inputs/Outputs
, ,		DQh	Data Inputs/Outputs
ŌE	Output Enable	DQPa~Ph	Data Inputs/Outputs
ZZ	Power Sleep Mode		
ZZ LBO	Burst Mode Control	VDDQ	Output Power Supply
тск	JTAG Test Clock		
TMS	JTAG Test Mode Select		
TDI	JTAG Test Data Input		
TDO	JTAG Test Data Output		

FUNCTION DESCRIPTION

The K7N327245M is NtRAM™ designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from Read to Write, or vice versa.

All inputs (with the exception of \overline{OE} , \overline{LBO} and ZZ) are synchronized to rising clock edges.

All read, write and deselect cycles are initiated by the ADV input. Subsequent burst addresses can be internally generated by the burst advance pin (ADV). ADV should be driven to Low once the device has been deselected in order to load a new address for next operation.

Clock Enable(CKE) pin allows the operation of the chip to be suspended as long as necessary. When CKE is high, all synchronous inputs are ignored and the internal device registers will hold their previous values.

NtRAM™ latches external address and initiates a cycle, when CKE, ADV are driven to low and all three chip enables(CS₁, CS₂, CS₂) are active .

Output Enable(OE) can be used to disable the output at any given time.

Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the address register, \overline{CKE} is driven low, all three chip enables(\overline{CS}_1 , \overline{CS}_2) are active, the write enable input signals \overline{WE} are driven high, and ADV driven low. The internal array is read between the first rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM. Also during read operation \overline{OE} must be driven low for the device to drive out the requested data.

Write operation occurs when $\overline{\text{WE}}$ is driven low at the rising edge of the clock. $\overline{\text{BW}}[\text{h:a}]$ can be used for byte write operation. The pipelined NtRAMTM uses a late-late write cycle to utilize 100% of the bandwidth.

At the first rising edge of the clock, $\overline{\text{WE}}$ and address are registered, and the data associated with that address is required two cycle later.

Subsequent addresses are generated by ADV High for the burst access as shown below. The starting point of the burst seguence is provided by the external address. The burst address counter wraps around to its initial state upon completion.

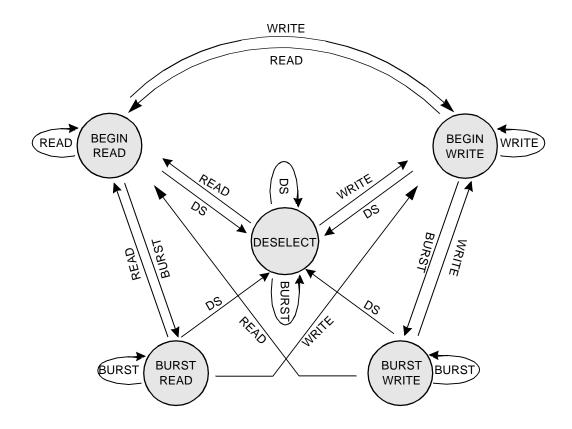
The burst sequence is determined by the state of the $\overline{\text{LBO}}$ pin. When this pin is low, linear burst sequence is selected. And when this pin is high, Interleaved burst sequence is selected.

During normal operation, ZZ must be driven low. When ZZ is driven high, the SRAM will enter a Power Sleep Mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM normally operates after 2 cycles of wake up time.

BURST SEQUENCE TABLE

(Interleaved Burst, LBO=High)

LBO PIN	HIGH	Cas	Case 1		Case 2		Case 3		Case 4	
		A 1	Ao	A 1	Ao	A 1	A ₀	A 1	A ₀	
First Address		0	0	0	1	1	0	1	1	
		0	1	0	0	1	1	1	0	
\downarrow		1	0	1	1	0	0	0	1	
Fourth Address		1	1	1	0	0	1	0	0	


(Linear Burst, LBO=Low)

LBO PIN	LOW	Cas	Case 1		Case 2		Case 3		Case 4	
		A 1	Ao							
Fii	First Address		0	0	1	1	0	1	1	
		0	1	1	0	1	1	0	0	
	\downarrow	1	0	1	1	0	0	0	1	
Fou	urth Address	1	1	0	0	0	1	1	0	

Note: 1. LBO pin must be tied to High or Low, and Floating State must not be allowed.

STATE DIAGRAM FOR NtRAM™

COMMAND	ACTION					
DS	DESELECT					
READ	BEGIN READ					
WRITE	BEGIN WRITE					
BURST	BEGIN READ BEGIN WRITE CONTINUE DESELECT					

Notes: 1. An IGNORE CLOCK EDGE cycle is not shown is the above diagram. This is because CKE HIGH only blocks the clock(CLK) input and does not change the state of the device.

2. States change on the rising edge of the clock(CLK)

TRUTH TABLES

SYNCHRONOUS TRUTH TABLE

CS ₁	CS ₂	CS ₂	ADV	WE	BWx	OE	CKE	CLK	ADDRESS ACCESSED	OPERATION
Н	Х	Χ	L	Χ	Х	Χ	L	↑	N/A	Not Selected
Х	L	Х	L	Χ	Х	Х	L	↑	N/A	Not Selected
Х	Х	Н	L	Χ	Х	Χ	L	↑	N/A	Not Selected
Х	Х	Χ	Н	Χ	Х	Χ	L	↑	N/A	Not Selected Continue
L	Н	L	L	Н	Х	L	L	↑	External Address	Begin Burst Read Cycle
Х	Х	Х	Н	Х	Х	L	L	1	Next Address	Continue Burst Read Cycle
L	Н	L	L	Н	Х	Н	L	↑	External Address	NOP/Dummy Read
Х	Х	Х	Н	Х	Х	Н	L	1	Next Address	Dummy Read
L	Н	L	L	L	L	Х	L	1	External Address	Begin Burst Write Cycle
Х	Х	Х	Н	Х	L	Х	L	1	Next Address	Continue Burst Write Cycle
L	Н	L	L	L	Н	Х	L	1	N/A	NOP/Write Abort
Х	Х	Х	Н	Х	Н	Х	L	1	Next Address	Write Abort
Х	Х	Х	Х	Χ	Х	Х	Н	1	Current Address	Ignore Clock

Notes: 1. X means "Don't Care".

- 2. The rising edge of clock is symbolized by (\uparrow) .
- 3. A continue deselect cycle can only be enterd if a deselect cycle is executed first.
- 4. WRITE = L means Write operation in WRITE TRUTH TABLE.

 WRITE = H means Read operation in WRITE TRUTH TABLE.
- 5. Operation finally depends on status of asynchronous input pins(ZZ and $\overline{\text{OE}}$).

WRITE TRUTH TABLE(x72)

WE	BWa	BWb	BWc	BWd	BWe	BWf	BWg	BWh	OPERATION
Н	X	X	X	X	X	X	X	X	READ
L	L	Н	Н	Н	Н	Н	Н	Н	WRITE BYTE a
L	Н	L	Н	Н	Н	Н	Н	Н	WRITE BYTE b
L	Н	Н	L	Н	Н	Н	Н	Ι	WRITE BYTE c
L	Н	Н	Н	L	Н	Н	Н	Η	WRITE BYTE d
L	Н	Н	Н	Н	L	Н	Н	Н	WRITE BYTE e
L	Н	Н	Н	Н	Н	L	Н	Н	WRITE BYTE f
L	Н	Н	Н	Н	Н	Н	L	Ι	WRITE BYTE g
L	Н	Н	Н	Н	Н	Н	Н	L	WRITE BYTE h
L	L	L	L	L	L	L	L	L	WRITE ALL BYTEs
L	Н	Н	Н	Н	Н	Н	Н	Н	WRITE ABORT/NOP

Notes: 1. X means "Don't Care".

2. All inputs in this table must meet setup and hold time around the rising edge of $CLK(\uparrow)$.

ASYNCHRONOUS TRUTH TABLE

OPERATION	ZZ	OE	I/O STATUS
Sleep Mode	Н	Χ	High-Z
Read	L	L	DQ
Redu	L	Н	High-Z
Write	L	Х	Din, High-Z
Deselected	L	Х	High-Z

Notes

- 1. X means "Don't Care".
- Sleep Mode means power Sleep Mode of which stand-by current does not depend on cycle time.
- not depend on cycle time.

 3. Deselected means power Sleep Mode of which stand-by current depends on cycle time.

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on VDD Supply Relative to Vss	VDD	-0.3 to 3.6	V
Voltage on Any Other Pin Relative to Vss	VIN	-0.3 to VDD+0.3	V
Power Dissipation	PD	1.6	W
Storage Temperature	Тѕтс	-65 to 150	°C
Operating Temperature	Topr	0 to 70	°C
Storage Temperature Range Under Bias	TBIAS	-10 to 85	°C

^{*}Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING CONDITIONS($0^{\circ}C \le TA \le 70^{\circ}C$)

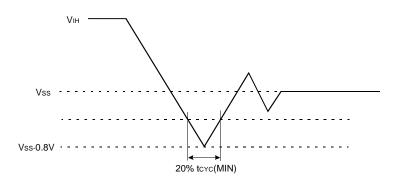
PARAMETER	SYMBOL	MIN	Тур.	MAX	UNIT
Cumply Voltage	Vdd	2.375	2.5	2.625	V
Supply Voltage	VDDQ	2.375	2.5	2.625	V
Ground	Vss	0	0	0	V

^{*}Note : V_{DD} and V_{DDQ} must be supplied with identical vlotage levels.

CAPACITANCE*(TA=25°C, f=1MHz)

PARAMETER	SYMBOL	TEST CONDITION	MIN	MAX	UNIT
Input Capacitance	Cin	VIN=0V	-	5	pF
Output Capacitance	Соит	Vout=0V	-	7	pF

*Note : Sampled not 100% tested.



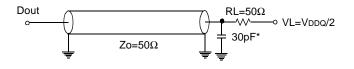
DC ELECTRICAL CHARACTERISTICS(VDD=2.5V ±5%, TA=0°C to +70°C)

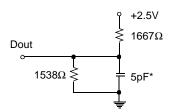
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	MAX	UNIT	NOTES
Input Leakage Current(except ZZ)	lıL	VDD=Max; VIN=Vss to VDD		-2	+2	μΑ	
Output Leakage Current	loL	Output Disabled,		-2	+2	μΑ	
			-25	-	TBD		
			-22	-	TBD	A	
On a series of Occurrent	Icc	VDD=Max IOUT=0mA	-20	-	TBD		1,2
Operating Current	ICC	Cycle Time ≥ tcyc Min	-16	-	TBD	mA	1,∠
			-15	-	TBD		
			-13	-	TBD		
	ISB		-25	-	TBD		
		Device deselected, IouT=0mA, ZZ≤VIL, f=Max, All Inputs≤0.2V or ≥ VDD-0.2V	-22	-	TBD TBD	mA	
			-20	-			
			-16	-	TBD		
Standby Current			-15	-	TBD		
Standby Current			-13	-	TBD		
	ISB1	Device deselected, IouT=0mA, ZZ≤0. All Inputs=fixed (VDD-0.2V or 0.2V)	2V, f=0,	-	TBD	mA	
	ISB2	Device deselected, IouT=0mA, ZZ≥VDD-0.2V, f=Max, All Inputs≤VIL or ≥VIH		-	TBD	mA	
Output Low Voltage	Vol	IoL=1.0mA		-	0.4	V	
Output High Voltage	Voн	IOH=-1.0mA		2.0	-	V	
Input Low Voltage	VIL			-0.3*	0.7	V	
Input High Voltage	VIH			1.7	VDD+0.3**	V	3

Notes: 1. Reference AC Operating Conditions and Characteristics for input and timing.
2. Data states are all zero.

- 3. In Case of I/O Pins, the Max. VIH=VDDQ+0.3V

TEST CONDITIONS


(TA=0 to 70°C, VDD=2.5V ±5%, unless otherwise specified)


PARAMETER	VALUE
Input Pulse Level	0 to 2.5V
Input Rise and Fall Time(Measured at 20% to 80%)	1.0V/ns
Input and Output Timing Reference Levels	VDDQ/2
Output Load	See Fig. 1

Output Load(A)

Output Load(B), (for tLzc, tLzoe, tHzoe & tHzc)

* Including Scope and Jig Capacitance

Fig. 1

AC TIMING CHARACTERISTICS

 $(VDD=2.5V \pm 5\%, TA=0 \text{ to } 70^{\circ}\text{C})$

DADAMETER	CVMDOL	-2	25	-:	22	-:	20	-16		-15		-13		UNIT
PARAMETER	SYMBOL	MIN	MAX	UNII										
Cycle Time	tcyc	4.0	ı	4.4	-	5.0	-	6.0	-	6.7	-	7.5	ı	ns
Clock Access Time	tcp	-	2.6	-	2.8	-	3.2	-	3.5	-	3.8	-	4.2	ns
Output Enable to Data Valid	toe	-	2.6	-	2.8	-	3.2	-	3.5	-	3.8	-	4.2	ns
Clock High to Output Low-Z	tLZC	1.5	1	1.5	-	1.5	-	1.5	-	1.5	-	1.5	1	ns
Output Hold from Clock High	tон	1.5	1	1.5	-	1.5	-	1.5	-	1.5	-	1.5	1	ns
Output Enable Low to Output Low-Z	tlzoe	0	1	0	-	0	-	0	-	0	-	0	1	ns
Output Enable High to Output High-Z	tHZOE	-	2.6	-	2.8	-	3.0	-	3.0	-	3.0	-	3.5	ns
Clock High to Output High-Z	tHZC	-	2.6	-	2.8	-	3.0		3.0	-	3.0		3.5	ns
Clock High Pulse Width	tch	1.7	1	2.0	-	2.0	-	2.2	-	2.5	-	3.0	1	ns
Clock Low Pulse Width	tCL	1.7	-	2.0	-	2.0	-	2.2	-	2.5	-	3.0	-	ns
Address Setup to Clock High	tas	1.2	1	1.4	-	1.4	-	1.5	-	1.5	-	1.5	1	ns
CKE Setup to Clock High	tces	1.2	1	1.4	-	1.4	-	1.5	-	1.5	-	1.5	1	ns
Data Setup to Clock High	tDS	1.2	1	1.4	-	1.4	-	1.5	-	1.5	-	1.5	1	ns
Write Setup to Clock High (WE, BWx)	tws	1.2	-	1.4		1.4	-	1.5		1.5	-	1.5	-	ns
Address Advance Setup to Clock High	tadvs	1.2	-	1.4		1.4	-	1.5		1.5	-	1.5	-	ns
Chip Select Setup to Clock High	tcss	1.2	1	1.4	-	1.4	-	1.5	-	1.5	-	1.5	1	ns
Address Hold from Clock High	tah	0.3	-	0.4		0.4	-	0.5		0.5	-	0.5	-	ns
CKE Hold from Clock High	tceh	0.3	-	0.4	-	0.4	-	0.5	-	0.5	-	0.5	-	ns
Data Hold from Clock High	tDH	0.3		0.4		0.4	-	0.5		0.5	-	0.5		ns
Write Hold from Clock High ($\overline{\text{WE}}$, $\overline{\text{BW}}$ x)	twH	0.3	1	0.4		0.4	-	0.5		0.5	-	0.5	1	ns
Address Advance Hold from Clock High	tadvh	0.3	-	0.4	-	0.4	-	0.5	-	0.5	-	0.5	-	ns
Chip Select Hold from Clock High	tcsH	0.3	-	0.4	-	0.4	-	0.5	-	0.5	-	0.5	-	ns
ZZ High to Power Down	tpds	2	-	2	-	2	-	2	-	2	-	2	-	cycle
ZZ Low to Power Up	tpus	2	-	2		2	-	2		2	-	2	-	cycle

Notes: 1. All address inputs must meet the specified setup and hold times for all rising clock(CLK) edges when ADV is sampled low and $\overline{\text{CS}}$ is sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.

2. Chip selects must be valid at each rising edge of CLK(when ADV is Low) to remain enabled.

4. To avoid bus contention, At a given voltage and temperature tLZC is more than tHZC.

It is not possible for two SRAMs on the same board to be at such different voltage and temperature.

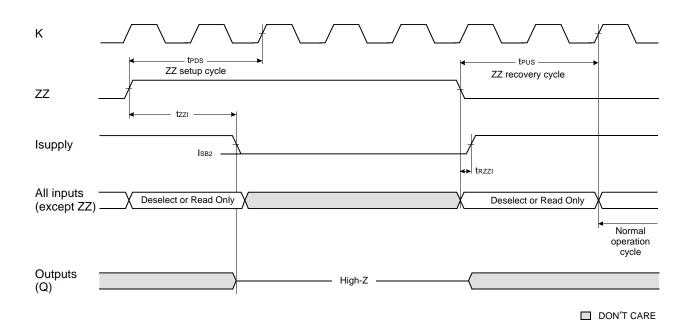
^{3.} A write cycle is defined by WE low having been registered into the device at ADV Low, A Read cycle is defined by WE High with ADV Low, Both cases must meet setup and hold times.

The specs as shown do not imply bus contention because tzc is a Min. parameter that is worst case at totally different test conditions (0°C,2.625V) than tHzc, which is a Max. parameter(worst case at 70°C,2.375V)

SLEEP MODE

SLEEP MODE is a low current, power-down mode in which the device is deselected and current is reduced to IsB2. The duration of SLEEP MODE is dictated by the length of time the ZZ is in a High state.

After entering SLEEP MODE, all inputs except ZZ become disabled and all outputs go to High-Z

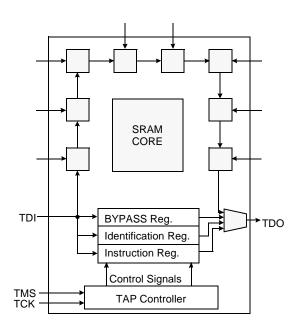

The ZZ pin is an asynchronous, active high input that causes the device to enter SLEEP MODE.

When the ZZ pin becomes a logic High, ISB2 is guaranteed after the time tzzl is met. Any operation pending when entering SLEEP MODE is not guaranteed to successful complete. Therefore, SLEEP MODE (READ or WRITE) must not be initiated until valid pending operations are completed. similarly, when exiting SLEEP MODE during tpus, only a DESELECT or READ cycle should be given while the SRAM is transitioning out of SLEEP MODE.

SLEEP MODE ELECTRICAL CHARACTERISTICS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS
Current during SLEEP MODE	ZZ ≥ VIH	ISB2		10	mA
ZZ active to input ignored		tpds	2		cycle
ZZ inactive to input sampled		tpus	2		cycle
ZZ active to SLEEP current		tzzı		2	cycle
ZZ inactive to exit SLEEP current		trzzi	0		

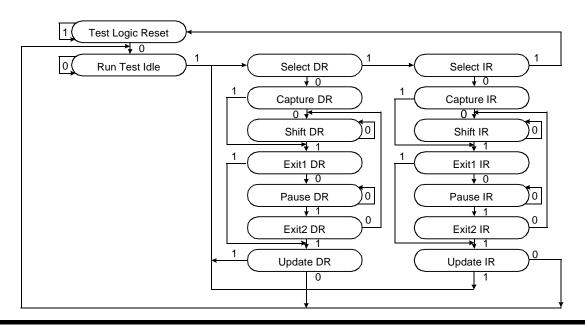
SLEEP MODE WAVEFORM



IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG

This part contains an IEEE standard 1149.1 Compatible Test Access Port(TAP). The package pads are monitored by the Serial Scan circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must be tied to Vss to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to Vpd through a resistor. TDO should be left unconnected.

JTAG Block Diagram


JTAG Instruction Coding

IR2	IR1	IR0	Instruction	TDO Output	Notes
0	0	0	EXTEST	Boundary Scan Register	1
0	0	1	IDCODE	Identification Register	3
0	1	0	SAMPLE-Z	Boundary Scan Register	2
0	1	1	BYPASS	Bypass Register	4
1	0	0	SAMPLE	Boundary Scan Register	5
1	0	1	RESERVED	Do Not Use	6
1	1	0	BYPASS	Bypass Register	4
1	1	1	BYPASS	Bypass Register	4

NOTE:

- Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs. This instruction is not IEEE 1149.1 compliant.
- Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs.
- 3. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.
- Bypass register is initiated to Vss when BYPASS instruction is invoked. The Bypass Register also holds serially loaded TDI when exiting the Shift DR states.
- 5. SAMPLE instruction dose not places DQs in Hi-Z.
- 6. This instruction is reserved for future use.

TAP Controller State Diagram

Rev 0.1

SCAN REGISTER DEFINITION

Part	Instruction Register	Bypass Register	ID Register	Boundary Scan
512Kx36	3 bits	1 bits	32 bits	123 bits

ID REGISTER DEFINITION

Part	Revision Number (31:28)	Part Configuration (27:18)	Vendor Definition (17:12)	Samsung JEDEC Code (11: 1)	Start Bit(0)
512Kx72	0000	00111 00101	XXXXXX	00001001110	1

BOUNDARY SCAN EXIT ORDER

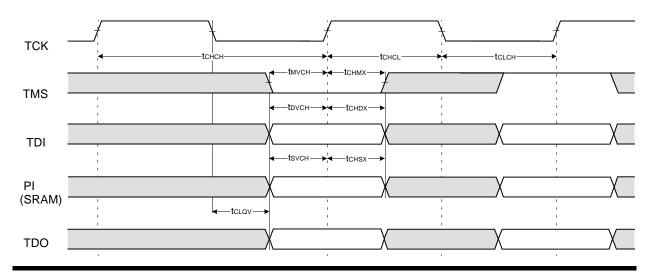
BIT	PIN ID	BIT	PIN ID	BIT	PIN ID
1		43		85	
2		44		86	
3		45		87	
4		46		88	
5		47		89	
6		48		90	
7		49		91	
8		50		92	
9		51		93	
10		52		94	
11		53		95	
12		54		96	
13		55		97	
14		56		98	
15		57		99	
16		58		100	
17				101	
18				102	
19				103	
20		62		104	
21		63		104	
22		64		105	
23		65		106	
24		66		107	
25		67		108	
26		68		109	
27		69		110	
28		70		111	
29		71		112	
30		72		113	
31		73		114	
32		74		115	
33		75		116	
34		76		117	
35		77		118	
36		78		119	
37		79		120	
38		80		121	
39		81		122	
40		82		123	
41		83			
42		84			

Note: 1. NC and Vss pins included in the scan exit order are read as "X" (i.e. don't care).

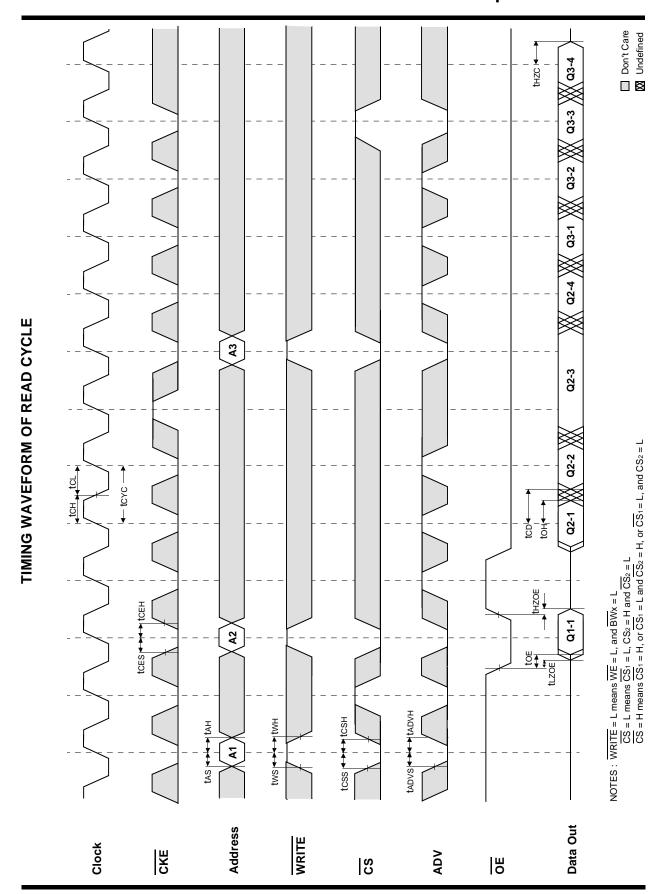
JTAG DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power Supply Voltage	VDD	2.4	2.5	2.6	V	
Input High Level	VIH	1.7	=	VDD+0.3	V	
Input Low Level	VIL	-0.3	-	0.7	V	
Output High Voltage	Voн	2.0	-	=	V	
Output Low Voltage	Vol	-	-	0.4	V	

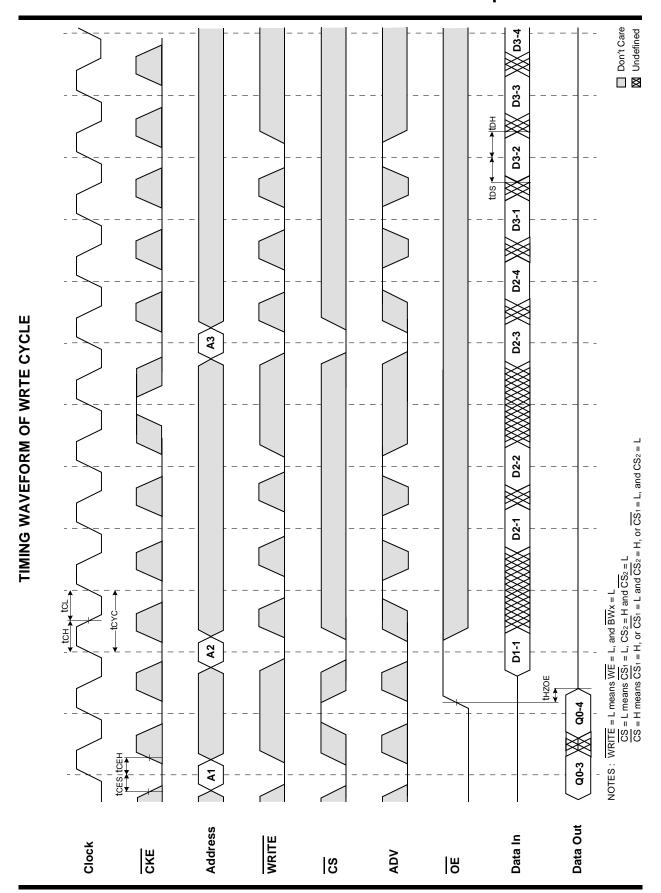
 $\ensuremath{\textbf{NOTE}}$: The input level of SRAM pin is to follow the SRAM DC specification.

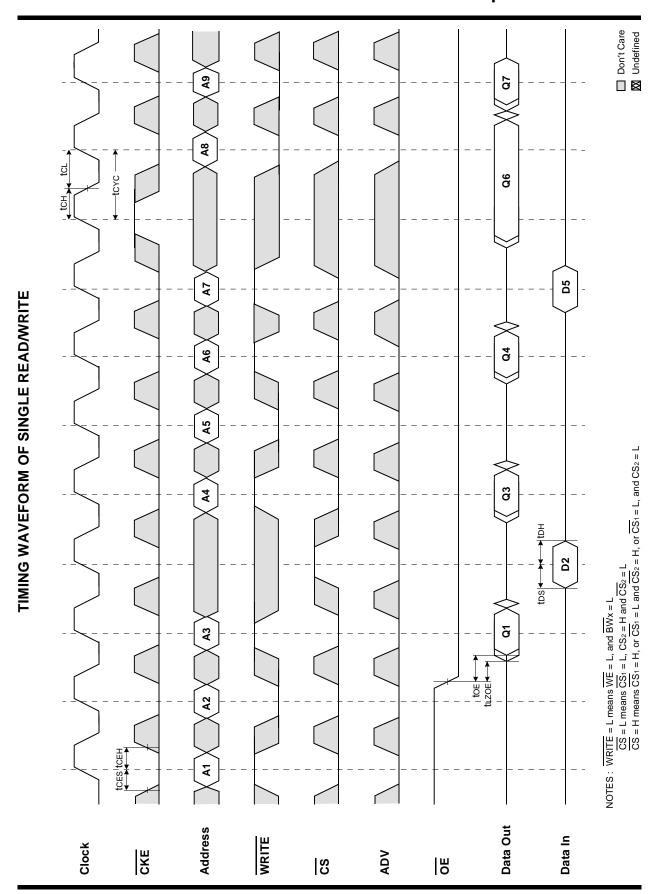

JTAG AC TEST CONDITIONS

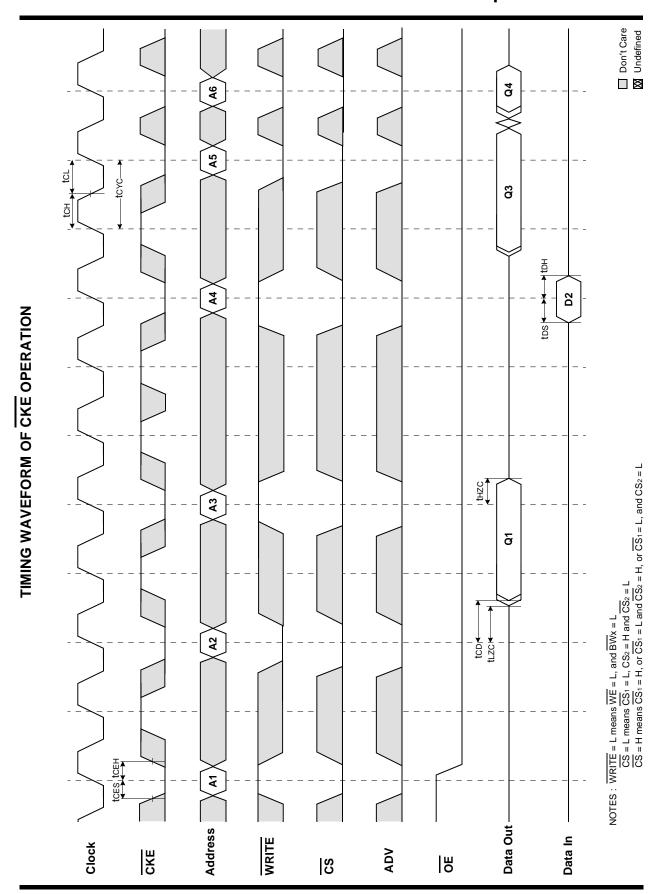
Parameter	Symbol	Min	Unit	Note
Input High/Low Level	VIH/VIL	2.5/0	V	
Input Rise/Fall Time	TR/TF	1.0/1.0	ns	
Input and Output Timing Reference Level		VDDQ/2	V	

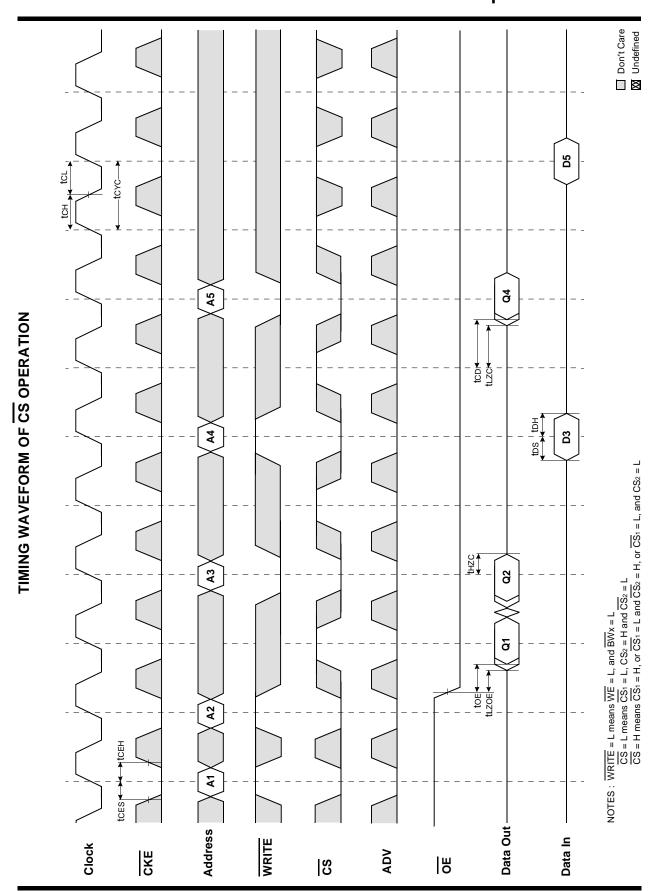

JTAG AC Characteristics

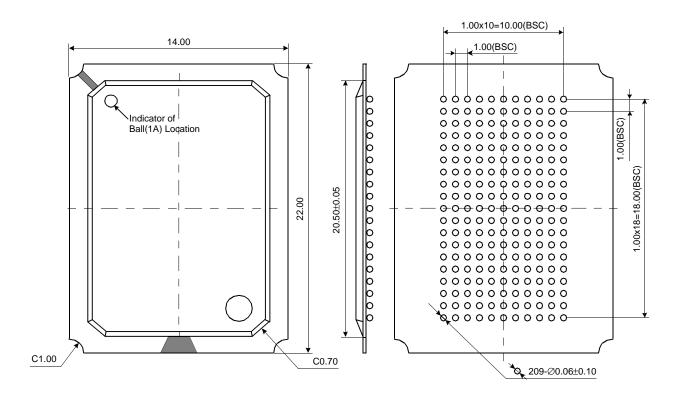
Parameter	Symbol	Min	Max	Unit	Note
TCK Cycle Time	tchch	50	=	ns	
TCK High Pulse Width	tchcl	20	-	ns	
TCK Low Pulse Width	tclch	20	=	ns	
TMS Input Setup Time	tmvch	5	=	ns	
TMS Input Hold Time	tchmx	5	-	ns	
TDI Input Setup Time	tdvch	5	=	ns	
TDI Input Hold Time	tCHDX	5	-	ns	
SRAM Input Setup Time	tsvch	5	-	ns	
SRAM Input Hold Time	tchsx	5	-	ns	
Clock Low to Output Valid	tclqv	0	10	ns	

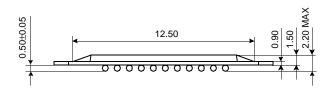

JTAG TIMING DIAGRAM











209 Bump BGA PACKAGE DIMENSIONS

14mm x 22mm Body, 1.0mm Bump Pitch, 11x19 Bump Array

NOTE:

- 1. All Dimensions are in Millimeters.
- 2. Solder Ball to PCB Offset: 0.10 MAX.
- 3. PCB to Cavity Offset: 0.10 MAX.