

SANYO Semiconductors DATA SHEET

LV8415CB -

Bi-CMOS integrated circuit

Blurring correction driver IC for DSC H bridge × 2ch driver

Overview

LV8415CB is blurring correction driver IC for DSC.

Functions

- Actuator driver (saturation drive H bridge) × 2ch
- Constant current hall bias circuit × 2ch
- With built-in for PWM signal generation logic circuit × 2ch
- 8bitDAC for hall amplifier offset adjustment × 2ch
- Two systems in power supply (V_M: for actuator, V_{CC})
- With built-in low voltage malfunction prevention circuit
- Hall Amplifier × 2ch
- General-purpose amplifier × 2ch
- 8bitDAC for hall bias × 2ch
- Three line serial input
- With built-in thermal protection circuit

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _M max		6	V
Supply voltage 2	V _{CC} max		6	V
Output peak current	I _O peak	OUT1 to 2 (t ≤ 10msec, duty ≤ 20%)	600	mA
Output current	I _O max	OUT1 to 2	350	mA
Hall bias current	I _{HB} max		5	mA
Allowable power dissipation	Pd max	On a specified board *	1	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

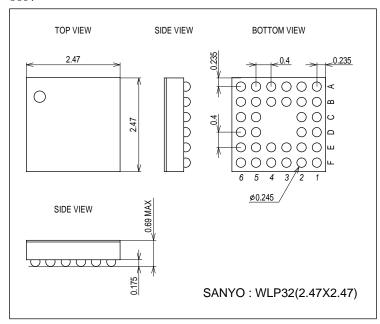
^{*} Specified board: 40.0mm×50.0mm×0.8mm, Four layers fiberglass epoxy circuit board.

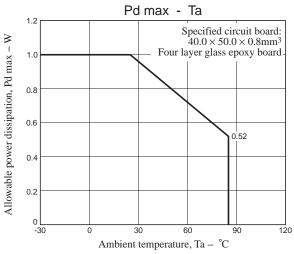
Allowable Operating Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range 1	\vee_{M}		2.7 to 5.5	V
Supply voltage range 2	Vcc		2.7 to 5.5	V
Logic input voltage	VIN		0 to V _{CC} +0.3	V

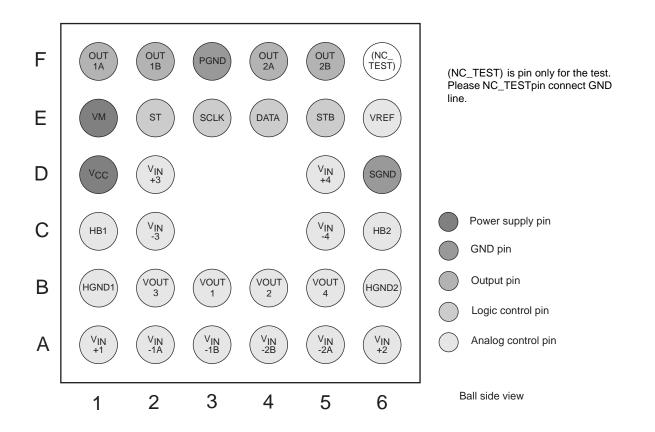
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.


Electrical Characteristics at $Ta=25^{\circ}C,\,V_{CC}=3.3V,\,V_{M}=5.0V$


Parameter	Symbol	Conditions		Ratings		Unit
i didilietei	Symbol	Conditions	min	typ	max	Offic
Current consumption when standing by	Icco	ST = "L"			1.0	μА
VM current consumption	I _M	V _M = 5.0V, ST = "H", no load			10	μА
V _{CC} current consumption	ICC	ST = "H", no load		2	3.2	mA
V _{CC} low voltage cutting voltage	VTHVCC		2.1	2.4	2.6	V
Low voltage hysteresis voltage	VTHHYS		100	150	200	mV
Thermal shutdown temperature	TSD	Design guarantee	155	175	195	°C
Thermal hysteresis width	ΔTSD	Design guarantee	15	35	55	°C
H bridge output (OUT1-2)		•				
Output on resistance	Ronu	I _O = 100mA, Upper-side on resistance		0.7	0.98	Ω
	Rond	I _O = 100mA, Under-side on resistance		0.5	0.7	Ω
Output leakage current	I _O leak				1	μА
Diode forward voltage	VD	ID = -100mA		0.7		V
Operational amplifier (OP-AMP1	1-4)	•				
Input offset voltage	OP_VIO			±1	±5	mV
Input offset current	OP_IIO			±5	±50	nA
Input bias current	OP_IB			30	250	nA
Equal phase input voltage range	VICM		0		VCC	V
Equal phase signal removal ratio	CMR		60	80		dB
Large amplitude voltage range	VG	$R_L = 20k\Omega$, VIN = 1mV(open loop gain)	1	10		V/mV
Output voltage range	V _O H	$R_L = 20k\Omega$	V _{CC} -0.2			V
	V _O L	$R_L = 20k\Omega$			0.2	V
Power supply change removal ratio	SVR		65	85		dB
Output current (sink/source)	OP_IO		1	2		mA
Hall bias (HB1-2)	I.			<u> </u>		
Output current	IHB	RHG = 1kΩ, VHBIN = 1.0V	0.95	1.00	1.05	mA
Output saturation voltage	VSATHB	I _{HB} = 1mA	V _{CC} -0.2			V
Standard voltage						
Standard voltage	VREF		1.60	1.65	1.70	V
Standard voltage load	VRref	I _{REF} = 100μA	1.60	1.65	1.70	V
characteristic						
Internal CLK frequency for PWN	/I drive					
CLK frequency	Fclk		13.5	15	17.25	MHz
Control pin (ST, SCLK, DATA, S	ТВ)					
Built-in pull-down resistance	Rin		50	100	200	kΩ
Input current	I _{IN} L	V _{IN} = 0V			1.0	μΑ
	I _{IN} H	V _{IN} = 3.3V	20	33	50	μΑ
Input "L" level voltage	V _{IN} L				1.0	V
Input "H" level voltage	V _{IN} H		2.5			V

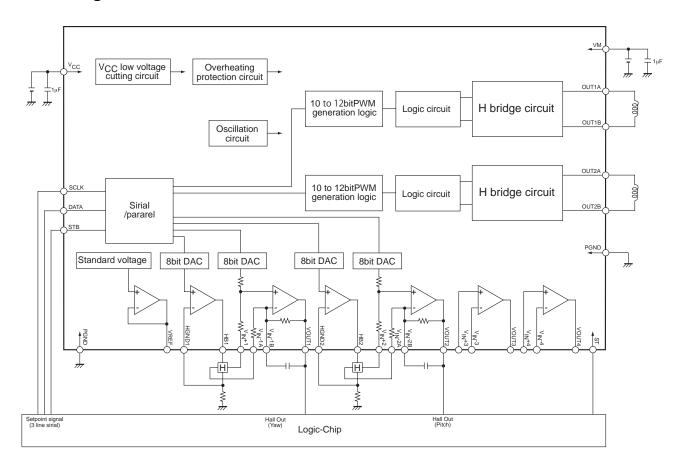
Package Dimensions


unit: mm (typ)

3397

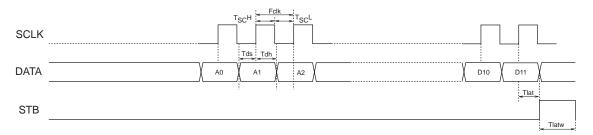
Pin Assignment

Pin function

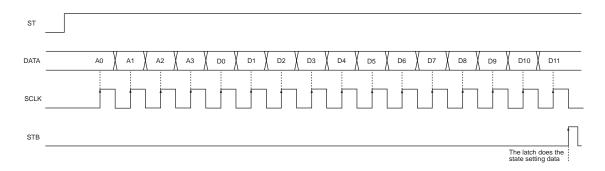

Pin tunc			
Pin No.	Pin name	Pin function	Equivalent Circuit
E2	ST	Input pin.	
E3	SCLK	High level 2V to (V _{CC} = 3.3V)	VCC
E4	DATA	Low level 0 to 0.5V (V _{CC} = 3.3V)	
E5	STB	(60 11)	
23	OID		_
			30kΩ '
			(IN) + • • • • • • • • • • • • • • • • • •
			Σ ≥ 200κΩ
			GND GND
F1	OUT1A	Output pin. (PWM output)	
F2	OUT1B	VM : POWER – Power supply pin.	(M) + + + - + +
F4	OUT2A	PGND : POWER – GND pin.	VIII
F5		TOND TOWER - GIND pin.	
	OUT2B		
E1	VM		
F3	PGND		
			(PG)
			<u> </u>
D1	VCC	Signal system power supply pin	
D6	SGND	Signal system GND pin	
C1	HB1	HB1, 2 pin	\/
B1	HGND1	Hall bias source pin	Vcc + +
C6	HB2	HGND1, 2 pin	
B6	HGND2	Hall bias current setting pin	
			$3k\Omega$
			IN HB
			HGND ★ ↓ ↓ ★
			T
			GND -
A1	V _{IN} +1	Hall amplifier input pin	M
A2	V _{IN} -1A	V _{IN} + Hall amplifier+ input pin	V _{CC} →
A3	V _{IN} -1B	V _{IN} -A Hall amplifier- input pin	
A6	V _{IN} +2	V _{IN} -B LPF formation pin	→ NB
A5	V _{IN} -2A	(The filter is formed for the noise removal.)	*
A4	V _{IN} -2B		
	•		3.6kΩ (NA)
			(N+) W
			3K22 3.0K22
			<i>m</i>
			GND —
В3	VOUT1	Hall amplifier output pin.	
B4	VOUT2	VOUT1 : Hall amplifier 1ch output pin.	(V _{CC})
		VOUT2 : Hall amplifier 2ch output pin.	
			∷. 本
			W
1			GND

Continued on next page.

Continued from preceding page.


Pin No.	Pin name	Pin function	Equivalent Circuit
D2 C2 D5 C5	VIN+3 VIN-3 VIN+4 VIN+4	General purpose amplifier input pin. VIN+3: 3ch general purpose amplifier+ input pin VIN-3: 3ch general purpose amplifier- input pin VIN+4: 4ch general purpose amplifier+ input pin VIN-4: 4ch general purpose amplifier- input pin	VCC 3kΩ (IN)
B2 B5	VOUT3 VOUT4	General purpose amplifier output pin. VOUT3: 3ch general purpose amplifier output pin VOUT4: 4ch general purpose amplifier output pin	-W-OT
E6	VREF	Internal standard voltage pin V _{CC} /2 output	VCC 3kΩ VREF
F6	NC-TEST	N.C. pin TEST pin Please NC_TESTpin connect GND line.	VCC 10kΩ § GND

Block Diagram



3 line serial communication electrical Characteristics at Ta = 25°C, V_{CC} = 3.3V, V_{M} = 5.0V

Dannester	O. makad	Condition		Ratings		1.1
Parameter	Symbol	Conditions	min	typ	max	Unit
Serial data forwarding pin						
Logic pin input current	I _{IN} L	V _{IN} =0V(SCLK, DATA, STB)			1.0	μΑ
	I _{IN} H	V _{IN} =3.3V(SCLK, DATA, STB)		33	50	V
Input "H" level voltage	V _{IN} H	SCLK, DATA, STB	2.5			V
Input "L" level voltage	V _{IN} L	SCLK, DATA, STB			1.0	μS
Minimum SCLK "H" pulse width	T _{SC} H		0.1			μS
Minimum SCLK "L" pulse width	T _{SC} L		0.1			μS
STB regulation time	Tlat		0.1			μS
Minimum STB pulse width	Tlatw		0.1			μs
Data set-up time	Tds		0.1			μS
Data hold time	Tdh		0.1			μS
maximum CLK frequency	Fclk				4	MHz

Serial data timing condition Serial data input timing chart

It inputs it from A0 in order of D11. The data transfer is done by the rising edge, and after all data transfers, the latch does all data to SCLK by the STB signal standing up. The STB signal accepts and the internal logic of IC doesn't accept the SCLK signal during "H".

Serial logic map

PWMh - bridge relation serial map

								nput										
A0	A1	A2	A3	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	Setting mode	Set content	Remarks
0	0	0	0	*	*	0	0	0	0	0	0	0	0	0	0		100%	
				*	*	1	0	0	0	0	0	0	0	0	0		511/512 × 100%	
				*	*	0	1	0	0	0	0	0	0	0	0		510/512 × 100%	
									-					-				Reverse
				*	*	0	1	1	1	1	1	1	1	1	0		2/512 × 100%	
				*	*	1	1	1	1	1	1	1	1	1	0		1/512 × 100%	
						-	-	•	-					-			1/812 ** 100/0	Middle
				*	*	0	0	0	0	0	0	0	0	0	1	1ch PWM Duty set	0%	point
				*	*	1	0	0	0	0	0	0	0	0	1		1/512 × 100%	
				*	*	0	1	0	0	0	0	0	0	0	1		2/512 × 100%	
																		Normal
				*	*	1	0	1	1	1	1	1	1	1	1		509/512 × 100%	rotation
				*	*	0	1	1	1	1	1	1	1	1	1		510/512 × 100%	
				*	*	1	1	1	1	1	1	1	1	1	1		511/512 × 100%	
1	0	0	0	*	*	0	0	0	0	0	0	0	0	0	0		100%	
				*	*	1	0	0	0	0	0	0	0	0	0		511/512 × 100%	
				*	*	0	1	0	0	0	0	0	0	0	0		510/512 × 100%	Reverse
					at.													
				*	*	0	1	1	1	1	1	1	1	1	0		2/512 × 100%	
				*	*	1	1	1	1	1	1	1	1	1	0		1/512 × 100%	26.11
				*	*	0	0	0	0	0	0	0	0	0	1	2ch PWM Duty set	0%	Middle point
				*	*	1	0	0	0	0	0	0	0	0	1		1/512 × 100%	
				*	*	0	1	0	0	0	0	0	0	0	1		2/512 × 100%	
																		Normal
				*	*	1	0	1	1	1	1	1	1	1	1		509/512 × 100%	rotation
				*	*	0	1	1	1	1	1	1	1	1	1		510/512 × 100%	
				*	*	1	1	1	1	1	1	1	1	1	1		511/512 × 100%	
0	1	0	0	0	0	0	0	0	0	0	0	*	*	*	*		0V	
				1	0	0	0	0	0	0	0	*	*	*	*		1/255 × VREF	
				0	1	0	0	0	0	0	0	*	*	*	*	1ch hall bias set	2/255 × VREF	
												*	*	*	*	(8bit DAC)		
				1	0	1	1	1	1	1	1	*	*	*	*	(6011 DAC)	253/255 × VREF	
				0	1	1	1	1	1	1	1	*	*	*	*		254/255 × VREF	
				1	1	1	1	1	1	1	1	*	*	*	*		VREF	
1	1	0	0	0	0	0	0	0	0	0	0	*	*	*	*		0V	
				1	0	0	0	0	0	0	0	*	*	*	*		1/255 × VREF	
				0	1	0	0	0	0	0	0	*	*	*	*	2ch hall bias set	2/255 × VREF	
												*	*	*	*	(8bit DAC)		
				1	0	1	1	1	1	1	1	*	*	*	*	(23.12.10)	253/255 × VREF	
				0	1	1	1	1	1	1	1	*	*	*	*		254/255 × VREF	
				1	1	1	1	1	1	1	1	*	*	*	*		VREF	
0	0	1	0	0	0	0	0	0	0	0	0	*	*	*	*		0V	
				1	0	0	0	0	0	0	0	*	*	*	*		1/255 × V _{CC}	
				0	1	0	0	0	0	0	0	*	*	*	*	1ch hall amplifier	2/255 × V _{CC}	
												*	*	*	*	offset adjustment		
				1	0	1	1	1	1	1	1	*	*	*	*	(8bit DAC)	253/255 × V _{CC}	
				0	1	1	1	1	1	1	1	*	*	*	*		254/255 × V _{CC}	
				1	1	1	1	1	1	1	1	*	*	*	*		V _{CC}	
1	0	1	0	0	0	0	0	0	0	0	0	*	*	*	*		0V	
				1	0	0	0	0	0	0	0	*	*	*	*		1/255 × V _{CC}	
				0	1	0	0	0	0	0	0	*	*	*	*	2ch hall amplifier	2/255 × V _{CC}	
					<u> </u>								*	*	*	offset adjustment		
				1	0	1	1	1	1	1	1	*	*	*	*	(8bit DAC)	253/255 × V _{CC}	
				0	1	1	1	1	1	1	1	*		*			254/255 × V _{CC}	
<u></u>		<u> </u>	<u> </u>	1	1	1	1	1	1	1	1	*	*	*	*		v_{CC}	

The PWMh-bridge driver's ON/OFF operation is done with the ST pin.

Hall amplifier gain setting range

Hall amplifier relation serial map

			Int	out					Hall amplifier magnification
A0	A1	A2	A3	D0	D1	D2	D3	Setting mode	()Inside: Resistance
0	0	0	1	0	0	0	0	1ch hall amplifier gain setting	10 (36k//3.6k)
			_	1	0	0	0	("3" Resistance ÷ "2"	20 (72k//3.6k)
				0	1	0	0	Resistance)	40 (144k//3.6k)
				1	1	0	0	,	50 (180k//3.6k)
				0	0	1	0	 -	60 (216k//3.6k)
				1	0	1	0	 -	70 (252k//3.6k)
				0	1	1	0	 -	90 (324k//3.6k)
				1	1	1	0	<u> </u>	100 (360k//3.6k)
				0	0	0	1	 -	110 (396k//3.6k)
				1	0	0	1		120 (432k//3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1	<u> </u>	150 (540k//3.6k)
				0	0	1	1	<u> </u>	160 (570k//3.6k)
				1	0	1	1	<u> </u>	170 (612k//3.6k)
				0	1	1	1	 	
				1	1	1	1	 -	190 (684k//3.6k)
1	0	0	1	0		0		2-1-1-111:::	200 (720k//3.6k)
1	0	Ü	1		0		0	2ch hall amplifier gain setting ("3" Resistance ÷ "2"	10 (36k//3.6k)
				1	0	0	0	Resistance)	20 (72k//3.6k)
				0	1	0	0	Resistance)	40 (144k//3.6k)
				1	1	0	0	<u> </u>	50 (180k//3.6k)
				0	0	1	0	<u> </u>	60 (216k//3.6k)
				1	0	1	0	<u> </u>	70 (252k//3.6k)
				0	1	1	0	<u> </u>	90 (324k//3.6k)
				1	1	1	0	_	100 (360k//3.6k)
				0	0	0	1	<u> </u>	110 (396k//3.6k)
				1	0	0	1	<u> </u>	120 (432k//3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1		150 (540k//3.6k)
				0	0	1	1	<u>_</u>	160 (570k//3.6k)
				1	0	1	1	<u> </u>	170 (612k//3.6k)
				0	1	1	1	<u> </u>	190 (684k//3.6k)
				1	1	1	1		200 (720k//3.6k)
0	1	0	1	0	0	0	0	1ch hall amplifier offset	10 (36k//3.6k)
				1	0	0	0	resistance / input resistance	20 (72k//3.6k)
				0	1	0	0	("1" Resistance ÷ "2"	40 (144k//3.6k)
				1	1	0	0	Resistance)	50 (180k//3.6k)
				0	0	1	0	_	60 (216k//3.6k)
				1	0	1	0	_	70 (252k//3.6k)
				0	1	1	0	<u> </u>	90 (324k//3.6k)
				1	1	1	0	<u> </u>	100 (360k//3.6k)
				0	0	0	1	<u> </u>	110 (396k//3.6k)
				1	0	0	1		120 (432k//3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1		150 (540k//3.6k)
				0	0	1	1		160 (570k//3.6k)
				1	0	1	1		170 (612k//3.6k)
				0	1	1	1	Γ	190 (684k//3.6k)
	<u> </u>			1	1	1	1		200 (720k//3.6k)
1	1	0	1	0	0	0	0	2ch hall amplifier offset	10 (36k//3.6k)
				1	0	0	0	resistance / input resistance	20 (72k//3.6k)
				0	1	0	0	("1" Resistance ÷ "2"	40 (144k//3.6k)
				1	1	0	0	Resistance)	50 (180k//3.6k)
				0	0	1	0		60 (216k//3.6k)
				1	0	1	0		70 (252k//3.6k)
				0	1	1	0		90 (324k//3.6k)
				1	1	1	0		100 (360k//3.6k)
				0	0	0	1		110 (396k//3.6k)
				1	0	0	1		120 (432k//3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1		150 (540k//3.6k)
				0	0	1	1		160 (570k//3.6k)
				1	0	1	1		170 (612k//3.6k)
				0	1	1	1		
	Ì			U	1	1	1	<u> </u>	190 (684k//3.6k)
				1	1	1	1	l l	200 (720k//3.6k)

General-purpose amplifier ON/OFF setting

		Inj	put			Cattina mada	Set content	Remarks
A0	A1	A2	A3	D0	D1	Setting mode	Set content	Remarks
0	0	1	1	0	*	General-purpose	Stand-by	
				1	*	amplifier 1	Operate	
				*	0	General-purpose	Stand-by	
				*	1	amplifier 2	Operate	

PWM circuit accuracy setting

		Inj	out			Catting made	Set content	Remarks
A0	A1	A2	A3	D0	D1	Setting mode	Set content	Remarks
1	0	1	1	0	0		10bit resolution	Initial value
				0	1	DWM account out action	11bit resolution	
				1	0	PWM accuracy setting	12bit resolution	
				*	*		-	

PWM pulse width of moving

1ch (X axis side)

		ı		[3:0]		l		Setting mode	Moving pulse
A0	A1	A2	A3	D0	D1	D2	D3		number
0	1	1	1	0	0	0	0	1ch (X axis) side width of	0 (Initialization)
				1	0	0	0	moving	1
				0	1	0	0		2
				1	1	0	0		3
				0	0	1	0		4
				1	0	1	0		5
				0	1	1	0		6
				1	1	1	0		7
				0	0	0	1		8
				1	0	0	1		9
				0	1	0	1		10
				1	1	0	1		11
				0	0	1	1		12
				1	0	1	1		13
				0	1	1	1		14
				1	1	1	1		15

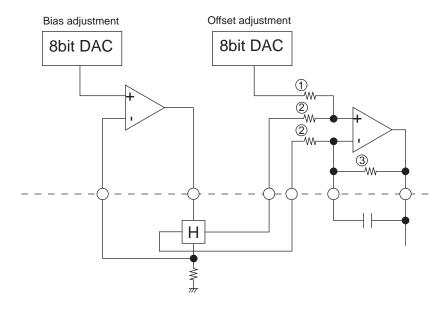
Note: 1 pulse = 1CLK

2ch (Y axis side)

			Input		22	D.	D.5	Setting mode	Moving pulse
A0	A1	A2	A3	D4	D5	D6	D7		number
0	1	1	1	0	0	0	0	2ch (Y axis) side width of	0 (Initialization)
				1	0	0	0	moving	1
				0	1	0	0		2
				1	1	0	0		3
				0	0	1	0		4
				1	0	1	0		5
				0	1	1	0		6
				1	1	1	0		7
				0	0	0	1		8
				1	0	0	1		9
				0	1	0	1		10
				1	1	0	1		11
				0	0	1	1		12
				1	0	1	1		13
				0	1	1	1		14
				1	1	1	1		15

Note: 1 pulse = 1CLK

The ON/OFF operation of the hall amplifier and the hall bias is done with the ST pin.


Note: An initial value of A0 to A3 = 1111 is a static test mode. Use it specifying data D0 for one.

TEST mode setting

as a mode setting							
Input					Catting made	Contont	Domonto
A0	A1	A2	A3	D0	Setting mode	Content	Remarks
1	1	1	1	0	NC pin _ TEST mode	External CLK	It uses it by the shipment inspection.
				1		Internal CLK	Internal CLK operation

Note: External CLK mode is for the shipment inspection. Use it with internal CLK. Use it after it internal CLK switches because default is external CLK mode.

Hall bias, Offset adjustment circuit configuration

Hall amplifier, Hall bias equivalent circuit

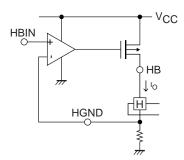
About the gain adjustment

The resistance ratio of "2" and "3" is adjusted in figure and the gain is set. Refer to the setting to the cereal map. The magnification can be set from ten by 200.

About the Offset adjustment

The resistance ratio of "1" and "2" is adjusted in figure and the Offset is set. Refer to the setting to the cereal map. The magnification can be set from ten by 200.

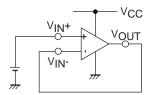
Note in design


• Stand-by function

IC becomes a stand-by state at ST = L, and IC enters the state of operation at ST = H. Moreover, the register in IC is reset as for ST = L at times.

• Hall bias

The constant current output is built into for the hall element drive. The constant current value is set from detection resistance (RHG) connected from the HBIN pin impression voltage and the HGND pin between GND.


Constant current value (I_O) = HBIN voltage \div Detection resistance

Constant current value (I_O) becomes about 1mA when assuming HBIN pin impressed voltage =1.0V and detection resistance = 1 k Ω from the above-mentioned calculation type. Moreover, the HGND pin must connect with the HB pin, and connect the detection resistance of a large value as much as possible when you do not use the hall bias circuit.

• Operation amplifier

Impress the bias to the V_{IN} + pin, and compose the buffer by the connection to the VOUT pin in the V_{IN}- pin in the operational amplifier not used.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2010. Specifications and information herein are subject to change without notice.