330 pF to $2.7 \mu \mathrm{~F}$
1 kV to 5 kV
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
1B/C0G and 2C1/X7R Dielectrics

ELECTRICAL SPECIFICATIONS

Temperature Coefficient CECC 30 000, (4.24.1)
1B/C0G: A Temperature Coefficient - $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
2C1/X7R: C Temperature Characteristic $- \pm 15 \%$ (0 ov dc)

Capacitance Test $25^{\circ} \mathrm{C}$

1B/COG: Measured at 1 VRMS max at $1 \mathrm{KHz}(1 \mathrm{MHz}<100 \mathrm{pF})$
2C1/X7R: Measured at 1 VRMS max at 1 KHz
Dissipation Factor $25^{\circ} \mathrm{C}$
1B/COG: $\quad 0.15 \%$ max at $1 \mathrm{KHz}, 1$ VRMS (1 MHz for $<100 \mathrm{pF}$) 2C1/X7R: 2.5% max at $1 \mathrm{KHz}, 1 \mathrm{VRMS}$

Insulation Resistance

1B/COG \& 2C1/X7R: 100K megohms or 1000 megohms- μ F, whichever is less

This range of radial, dual-in-line for both through hole and surface mount products is intended for use in high voltage power supplies and voltage multiplier circuits. The multilayer ceramic construction offers excellent volumetric efficiency compared with other high voltage dielectrics. They are suitable for both high reliability and industrial applications.

Dielectric Withstanding Voltage $\mathbf{2 5}^{\circ} \mathrm{C}$

130% rated voltage for 5 seconds
Life Test (1000 hrs) CECC 30000 (4.23)
$1 B / C 0 G$ \& 2C1/X7R: 120% rated voltage at $+125^{\circ} \mathrm{C}$.

Aging

1B/C0G: Zero
2C1/X7R: $2.5 \% /$ decade hour

DUAL-IN-LINE

(0.149)

DIMENSIONS
millimeters (inches)

Style	L (max)	\mathbf{w} (max)	\mathbf{S} (nom)	No. of Leads per side
CH 41	$9.2(0.362)$	$8.7(0.342)$	$8.2(0.323)$	3
CH 51	$10.7(0.421)$	$10.7(0.421)$	$10.2(0.400)$	4
CH 61	$14.9(0.587)$	$13.6(0.535)$	$14.0(0.551)$	5
CH 76	$21.6(0.850)$	$16.6(0.654)$	$20.3^{\star}(0.800)$	6
CH 91	$24.0(0.944)$	$40.6(1.598)$	$20.3^{\star}(0.800)$	14

Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
$\mathrm{L} 1=\mathrm{L} 2 \pm 0.5$ (0.020)
*Tolerance ± 0.8

HOW TO ORDER

Style Code

VERTICALLY MOUNTED RADIAL PRODUCT

Part Number format (CVxxxxxxxxxxxA2)

Typical Part Number CV51AC154MA80A2

DIMENSIONS

Style	\mathbf{L} (max)	\mathbf{H} (max)	\mathbf{T} (max)	\mathbf{S} (nom)	Lead Dia (nom)
CV41	$10.6(0.417)$	$8.70(0.343)$	$3.80(0.150)$	$8.20(0.323)$	$0.70(0.028)$
CV51	$11.9(0.469)$	$10.7(0.421)$	$3.80(0.150)$	$10.2(0.402)$	$0.90(0.035)$
CV61	$16.5(0.650)$	$13.6(0.536)$	$3.80(0.150)$	$15.2(0.599)$	$0.90(0.035)$
CV76	$22.7(0.893)$	$16.6(0.654)$	$3.80(0.150)$	$21.2^{*}(0.835)$	$0.90(0.035)$
CV91	$22.7(0.893)$	$40.6(1.598)$	$3.80(0.150)$	$21.2^{*}(0.835)$	$1.20(0.047)$

HOW TO ORDER

$\mathbf{C V}$	511	\uparrow	$\underset{F}{G}$	154	\mathbf{M}	A	8	9	\mathbf{A}	$\%$
Style Code	Size Code	Voltage Code $\begin{aligned} & \mathrm{A}=1 \mathrm{kV} \\ & \mathrm{G}=2 \mathrm{kV} \\ & \mathrm{H}=3 \mathrm{kV} \\ & \mathrm{~J}=4 \mathrm{kV} \\ & \mathrm{~K}=5 \mathrm{kV} \end{aligned}$	Dielectric Code $\begin{aligned} & A=C O G \\ & C=X 7 R \end{aligned}$	$\begin{gathered} \text { Capacitance } \\ \text { Code } \\ \text { (2 significant } \\ \text { digits + no. } \\ \text { of zeros) } \\ \text { eg. } 105=1 \mu \mathrm{~F} \\ 106=10 \mu \mathrm{~F} \\ 107=100 \mu \mathrm{~F} \end{gathered}$	$\begin{aligned} & \text { Capacitance } \\ & \text { Tolerance } \\ & \text { COG: } J= \pm 5 \% \\ & K= \pm 10 \% \\ & M= \pm 20 \% \\ & \text { X7R: } K= \pm 10 \% \\ & M= \pm 20 \% \\ & P=+100, \end{aligned}$	Specification Code A = Non customized	Finish Code $8 \text { = Varnish }$	Lead Dia. Code 0 = Standard	Lead Space Code A = Standard	Lead Style Code

High Voltage Leaded (CH/CV Style)
 Chip Assemblies

1B/COG ULTRA STABLE CERAMIC

	$\begin{gathered} \text { CV41-CH41 } \\ \text { Styles } \end{gathered}$					$\begin{gathered} \text { CV51-CH51 } \\ \text { Styles } \end{gathered}$					CV61-CH61Styles					CV76-CH76 Styles					CV91-CH91Styles				
Cap pF																									
330					K																				
390				J	K																				
470				J	K																				
560				J	K																				
680				J						K															
820			H	\checkmark						K															
1000			H						J	K															
1200			H						J	K															
1500			H						J						K										
1800		G						H	J						K										
2200		G						H						J	K										
2700		G						H						J						K					
3300		G					G						H	J						K					
3900		G					G						H						J	K					
4700		G					G						H						J	K					
5600	A						G						H						J						K
6800	A						G					G						H	J						K
8200	A						G					G						H						J	K
10000	A						G					G						H						J	K
12000	A					A						G						H						J	K
15000	A					A						G					G						H	J	
18000						A						G					G						H	\checkmark	
22000						A					A						G						H		
27000						A					A						G						H		
33000						A					A						G						H		
39000											A						G					G			
47000											A					A						G			
56000											A					A						G			
68000											A					A						G			
82000																A						G			
100000																A						G			
120000																					A				
150000																					A				
180000																					A				
220000																					A				
270000																					A				
330000																					A				

High Voltage Leaded (CH/CV Style)
 Chip Assemblies

2C1/X7R STABLE CERAMIC

	$\begin{gathered} \text { CV41-CH41 } \\ \text { Styles } \\ \hline \end{gathered}$					$\begin{aligned} & \text { CV51-CH51 } \\ & \text { Styles } \end{aligned}$					CV61-CH61 Styles					$\begin{gathered} \text { CV76-CH76 } \\ \text { Styles } \end{gathered}$					$\begin{gathered} \text { CV91-CH91 } \\ \text { Styles } \end{gathered}$				
Cap nF																									
1.2					K																				
1.3					K																				
1.5				J	K																				
2.2				J	K																				
2.7				J	K																				
3.3				J						K															
3.9				J						K															
4.7			H	J					J						K										
5.6			H						J						K										
6.8			H						\checkmark						K										
8.2		G	H						J						K										
10		G						H						J	K										
12		G						H						J						K					
15		G						H						\checkmark						K					
18	A						G	H					H						J	K					
22	A						G						H						\checkmark						K
27	A						G						H						J						K
33	A						G						H						J						K
39	A					A						G	H						\checkmark						K
47	A					A						G						H						J	K
56	A					A						G						H						J	K
68	A					A						G						H						J	
82	A					A						G					G						H	J	
100	A					A					A						G						H	J	
120	A					A					A						G						H	J	
150						A					A						G						H		
180						A					A					A						G	H		
220						A					A					A						G			
270						A					A					A						G			
330											A					A						G			
390											A					A					A				
470											A					A					A				
560											A					A					A				
680																A					A				
820																A					A				
1000																A					A				
1200																					A				
1500																					A				
1800																					A				
2200																					A				
2700																					A				

NB Figures in cells refer to size within ordering information

