Silicon Controlled Rectifiers Reverse Blocking Triode Thyristors

... designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

- Glass Passivated Junctions and Center Gate Fire for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts

and the second s

S2800 Series

SCRs 10 AMPERES RMS 50 thru 800 VOLTS

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Rating	Symbo!	Value	Unit
Peak Repetitive Forward and Reverse Blocking Voltage, Note 1 (T _J = 25 to 100°C, Gate Open) F A S2800 B D M	VRRM VDRM	50 100 200 400 600	Volts
Peak Non-Repetitive Reverse Voltage and Non-Repetitive Off-State Voltage, Note 1 F A A S2800 B D M N	VRSM VDSM	75 125 250 500 700 900	Volts
RMS Forward Current (All Conduction Angles) T _C = 75°C	lT(RMS)	10	Amps
Peak Forward Surge Current (1 Cycle, Sine Wave, 60 Hz, T _C = 8	0°C) ITSM	100	Amps
Circuit Fusing Considerations (t = 8.3 ms)	ı2 _t	40	A ² s
Forward Peak Gate Power (t ≤ 10 μs)	PGM	16	Watts
Forward Average Gate Power	PG(AV)	0.5	Watt
Operating Junction Temperature Range	TJ	-40 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Note 1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

S2800 Series

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _∂ JC	2	°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current (VAK = Rated VDRM or VRRM, Gate Open) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	IDRM, IRRM	=	=	10 2	μA mA
Instantaneous On-State Voltage ⟨I _{TM} = 30 A Peak, Pulse Width ≤ 1 ms, Duty Cycle ≤ 2%}	V _T	_	1.7	2	Volts
Gate Trigger Current (Continuous dc) (V _D = 12 Vdc, R _L = 30 Ohms)	lGT	_	8	15	mA
Gate Trigger Voltage (Continuous dc) (V _D = 12 Vdc, R _L = 30 Ohms)	V _{GT}		0.9	1.5	Volts
Holding Current (Gate Open, V _D = 12 Vdc, I _T = 150 mA)	Ч	_	10	20	mA
Gate Controlled Turn-On Time (V _D = Rated V _{DRM} , I _{TM} = 2 A, I _{GR} = 80 mA)	tgt	_	1.6	_	μs
Circuit Commutated Turn-Off Time (VD = VDRM, ITM = 2 A, Pulse Width = 50 μ s, dv/dt = 200 V/ μ s, di/dt = 10 A/ μ s, TC = 75°C)	tq	_	25	_	μ\$
Critical Rate-of-Rise of Off-State Voltage (V _D = Rated V _{DRM} , Exponential Rise, T _C = 100°C)	dv/dt	_	100	_	V/µs

FIGURE 1 - CURRENT DERATING

FIGURE 2 - POWER DISSIPATION

