ENCE SURFACE MOUNT Temperature variable attenuator

DATA SHEET **QTVAXXONXXXSMTF**

FEATURES

- 36 50 GHz
- Surface Mount for Pick and Place Assembly
- 1206 Small Footprint
- RoHS Compliant Versions
- Available on Tape & Reel
- Same Footprint, Fixed Versions Available

GENERAL DESCRIPTION

APPLICATIONS

- Point to Point Radios
- Phased Array Radar
- High Frequency Transceivers
- Up/Down Converters
- Software Defined Radios

The QTVA is a one of a kind, temperature variable high frequency surface mount device developed for applications where specific signal level control is required. Being passive in nature, there is no distortion, phase shift or time delay. The attenuator structure is internally tuned for optimum performance beyond Ka band, with the added benefit of being a truly symmetrical, bidirectional attenuator. The QTVA comes in two styles, microstrip and coplanar.

ELECTRICAL SPECIFICATIONS(1)

QTVAXXXNXXSMTF										
Frequency GHz	Impedance Ω	Attenuation dB	Attenuation Accuracy dB	Temperature Coefficient ⁽²⁾ 10 ⁻³ dB/dB/°C	Temperature Coefficient Tolerance 10 ⁻³ dB/dB/°C	Power Handling ⁽³⁾ mWatts CW	VSWR Max	Operating Temperature °C		
36 - 50	50	0, 3 – 10	± 0.5	3, 5, 7	± 1	200	1.50	-55 to +150		

Specification Notes:

(1) Measured on EMC Technology test fixture. Specifications are subject to change without notice.

(2) TCA = (LINEAR REGRESSION SLOPE) / (ATTENUATION @ 25°C).

Calculate linear regression slope from attenuation versus temperature from -55°C to +125°C in 20°C increment.

(3) Full rated power to 125°C, derated linearly to 0 Watts at 150°C

PART NUMBERING

DATA SHEET **QTVAXXONXXXSMTF**

REV 07/28/2010

TYPICAL PERFORMANCE

QTVA060NXXMSMTF*

DATA SHEET **QTVAXXONXXXSMTF**

REV 07/28/2010

QTVAXX0NXXMSMTF PIN DESIGNATION / MECHANICAL SPECIFICATION

MECHANICAL SPECIFICATION						
Substrate	96% Alumina					
Resistive Element	Thick Film					
Encapsulant	Silicon Polymer					
Termination	Gold					
Termination Finish	Silver .00030006 Nickel .00010003					

MOUNTING FOR QTVAXX0NXXMSMTF

MOUNTING CROSS-SECTION VIEW

DATA SHEET **QTVAXXONXXXSMTF**

QTVAXX0NXXCSMTF PIN DESIGNATION / MECHANICAL SPECIFICATION

MECHANICAL SPECIFICATION					
Substrate	96% Alumina Thick Film				
Resistive Element					
Encapsulant	Silicon Polymer				
Termination	Gold Silver .00030006 Nickel .00010003				
Termination Finish					

REV 07/28/2010

DATA SHEET **QTVAXXONXXXSMTF**

REV 07/28/2010

MOUNTING FOR QTVAXX0NXXCSMTF

DATA SHEET **QTVAXXONXXXSMTF**

REV 07/28/2010

COMMONLY USED ATTACHMENT MATERIALS

Material	Composition	Thermal Conductivity (Watts/cm/°C)	Melting Temperature (°C)
Gold-Tin Solder	80% Gold / 20% Tin	0.58	280
Lead-Free Solder	99.3% Tin – 0.7% Copper	N/A	227
Lead-Free Solder	96.5% Tin / 3.5% Silver	0.33	221
Lead-Free Solder	96.5% Tin / 3% Silver / 0.5% Copper	N/A	217 - 220
Sn63 Solder	63% Tin / 37% Lead	0.49	183
Conductive Epoxy	Silver Filled	0.01 to 0.29	N/A

CIRCUIT BOARD LAYOUT QTVAXX0NXXXSMTF

In order to achieve the specified RF performance, an optimized RF test board must be used for testing this attenuator. Florida RF Labs test board is constructed with a 0.010 in Rogers RO4350B high frequency board material is shown below.

[DRAWING TBD]

Figure 1: QTVAXX0NXXMSMTF

DATA SHEET **QTVAXXONXXXSMTF**

REV 07/28/2010

SOLDERING PROFILE

DATA SHEET **QTVAXXONXXXSMTF**

REV 07/28/2010

PACKAGING

[DRAWING TBD]

Figure 3: QTVAXX0NXXMSMTF

