

AAT8401

General Description

The AAT8401 is a low threshold MOSFET designed for the battery, cell phone, and PDA markets. Using AnalogicTech™'s ultra high density proprietary TrenchDMOS™ technology, this product demonstrates high power handling and small size.

Features

- $V_{DS(MAX)} = -20V$ $I_{D(MAX)}^{1} = -2.4A @ 25^{\circ}C$
- Low $R_{DS(ON)}$:

 100 mΩ @ V_{GS} = -4.5V

 175 mΩ @ V_{GS} = -2.5V

Applications

- **Battery Packs**
- Cellular & Cordless Telephones
- Battery-powered portable equipment

SC59 Package

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Symbol	Description		Value	Units	
V _{DS}	Drain-Source Voltage		-20	V	
V _{GS}	Gate-Source Voltage		±12	V	
I _D	Continuous Drain Current @ T _J =150°C ¹	T _A = 25°C	±2.4		
		T _A = 70°C	±2.0	Α	
I _{DM}	Pulsed Drain Current ²		±9	A	
I _S	Continuous Source Current (Source-Drain Diode) 1		-0.9		
P _D	Maximum Power Dissipation ¹	T _A = 25°C	1.0	W	
		T _A = 70°C	0.6		
T _J , T _{STG}	Operating Junction and Storage Temperature Range		-55 to 150	°C	

Thermal Characteristics

Symbol	Description	Value	Units
$R_{\theta JA}$	Typical Junction-to-Ambient steady state ¹	145	°C/W
$R_{\theta JA2}$	Maximum Junction-to-Ambient t<5 seconds ¹	125	°C/W
$R_{\theta JF}$	Typical Junction-to-Foot 1	50	°C/W

AAT8401

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Description	Conditions	Min	Тур	Max	Units		
DC Characteristics								
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250μA	-20			V		
R _{DS(ON)}	Drain-Source ON-Resistance ²	V _{GS} =-4.5V, I _D =-2.4A		88	100	mΩ		
		V _{GS} =-2.5V, I _D =-1.8A		146	175			
I _{D(ON)}	On-State Drain Current ²	V_{GS} =-4.5V, V_{DS} =-5V (Pulsed)	-9			Α		
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=-250\mu A$	-0.6			V		
I _{GSS}	Gate-Body Leakage Current	V_{GS} =±12V, V_{DS} =0V			±100	nA		
I _{DSS}	Drain Source Leakage Current	V_{GS} =0V, V_{DS} =-20V			-1	μΑ		
		V_{GS} =0V, V_{DS} =-16V, T_J =70°C 3			-5			
g _{fs}	Forward Transconductance ²	V_{DS} =-5V, I_{D} =-2.4A		4		S		
Dynamic C	characteristics ³					•		
Q_{G}	Total Gate Charge	V_{DS} =-15V, R_{D} =5.6 Ω , V_{GS} =-4.5V		4		nC		
Q_{GS}	Gate-Source Charge	V_{DS} =-15V, R_{D} =5.6 Ω , V_{GS} =-4.5V		0.6				
Q_{GD}	Gate-Drain Charge	V_{DS} =-15V, R_{D} =5.6 Ω , V_{GS} =-4.5V		1.4				
t _{D(ON)}	Turn-ON Delay	V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω		6.5				
t _R	Turn-ON Rise Time	V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω		13		ne		
t _{D(OFF)}	Turn-OFF Delay	V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω		15		ns		
t _F	Turn-OFF Fall Time	V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω		20				
Source-Drain Diode Characteristics								
V _{SD}	Source-Drain Forward Voltage ²	V _{GS} =0, I _S =-2.4A			-1.3	V		
I _S	Continuous Diode Current ¹				-0.9	Α		

Note 1: Based on thermal dissipation from junction to ambient while mounted on a 1" x 1" PCB with optimized layout. A 5 second pulse on a 1" x 1" PCB approximates testing a device mounted on a large multi-layer PCB as in most applications. $R_{\theta JF} + R_{\theta FA} = R_{\theta JA}$ where the foot thermal reference is defined as the normal solder mounting surface of the device's leads. $R_{\theta JF}$ is guaranteed by design, however $R_{\theta CA}$ is determined by the PCB design. Actual maximum continuous current is limited by the application's design.

Note 2: Pulse test: Pulse Width = 300 μ s

Note 3: Guaranteed by design. Not subject to production testing.