AAT8401 # **General Description** The AAT8401 is a low threshold MOSFET designed for the battery, cell phone, and PDA markets. Using AnalogicTech™'s ultra high density proprietary TrenchDMOS™ technology, this product demonstrates high power handling and small size. #### **Features** - $V_{DS(MAX)} = -20V$ $I_{D(MAX)}^{1} = -2.4A @ 25^{\circ}C$ - Low $R_{DS(ON)}$: 100 mΩ @ V_{GS} = -4.5V 175 mΩ @ V_{GS} = -2.5V # **Applications** - **Battery Packs** - Cellular & Cordless Telephones - Battery-powered portable equipment ## SC59 Package ### **Absolute Maximum Ratings** (T_A=25°C unless otherwise noted) | Symbol | Description | | Value | Units | | |-----------------------------------|--|-----------------------|------------|-------|--| | V _{DS} | Drain-Source Voltage | | -20 | V | | | V _{GS} | Gate-Source Voltage | | ±12 | V | | | I _D | Continuous Drain Current @ T _J =150°C ¹ | T _A = 25°C | ±2.4 | | | | | | T _A = 70°C | ±2.0 | Α | | | I _{DM} | Pulsed Drain Current ² | | ±9 | A | | | I _S | Continuous Source Current (Source-Drain Diode) 1 | | -0.9 | | | | P _D | Maximum Power Dissipation ¹ | T _A = 25°C | 1.0 | W | | | | | T _A = 70°C | 0.6 | | | | T _J , T _{STG} | Operating Junction and Storage Temperature Range | | -55 to 150 | °C | | # **Thermal Characteristics** | Symbol | Description | Value | Units | |------------------|---|-------|-------| | $R_{\theta JA}$ | Typical Junction-to-Ambient steady state ¹ | 145 | °C/W | | $R_{\theta JA2}$ | Maximum Junction-to-Ambient t<5 seconds ¹ | 125 | °C/W | | $R_{\theta JF}$ | Typical Junction-to-Foot 1 | 50 | °C/W | ### **AAT8401** ### **Electrical Characteristics** (T_J=25°C unless otherwise noted) | Symbol | Description | Conditions | Min | Тур | Max | Units | | | |------------------------------------|---|--|------|-----|------|-------|--|--| | DC Characteristics | | | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | V _{GS} =0V, I _D =-250μA | -20 | | | V | | | | R _{DS(ON)} | Drain-Source ON-Resistance ² | V _{GS} =-4.5V, I _D =-2.4A | | 88 | 100 | mΩ | | | | | | V _{GS} =-2.5V, I _D =-1.8A | | 146 | 175 | | | | | I _{D(ON)} | On-State Drain Current ² | V_{GS} =-4.5V, V_{DS} =-5V (Pulsed) | -9 | | | Α | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{GS}=V_{DS}$, $I_{D}=-250\mu A$ | -0.6 | | | V | | | | I _{GSS} | Gate-Body Leakage Current | V_{GS} =±12V, V_{DS} =0V | | | ±100 | nA | | | | I _{DSS} | Drain Source Leakage Current | V_{GS} =0V, V_{DS} =-20V | | | -1 | μΑ | | | | | | V_{GS} =0V, V_{DS} =-16V, T_J =70°C 3 | | | -5 | | | | | g _{fs} | Forward Transconductance ² | V_{DS} =-5V, I_{D} =-2.4A | | 4 | | S | | | | Dynamic C | characteristics ³ | | | | | • | | | | Q_{G} | Total Gate Charge | V_{DS} =-15V, R_{D} =5.6 Ω , V_{GS} =-4.5V | | 4 | | nC | | | | Q_{GS} | Gate-Source Charge | V_{DS} =-15V, R_{D} =5.6 Ω , V_{GS} =-4.5V | | 0.6 | | | | | | Q_{GD} | Gate-Drain Charge | V_{DS} =-15V, R_{D} =5.6 Ω , V_{GS} =-4.5V | | 1.4 | | | | | | t _{D(ON)} | Turn-ON Delay | V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω | | 6.5 | | | | | | t _R | Turn-ON Rise Time | V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω | | 13 | | ne | | | | t _{D(OFF)} | Turn-OFF Delay | V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω | | 15 | | ns | | | | t _F | Turn-OFF Fall Time | V_{DS} =-15V, R_D =5.6 Ω , V_{GS} =-4.5V, R_G =6 Ω | | 20 | | | | | | Source-Drain Diode Characteristics | | | | | | | | | | V _{SD} | Source-Drain Forward Voltage ² | V _{GS} =0, I _S =-2.4A | | | -1.3 | V | | | | I _S | Continuous Diode Current ¹ | | | | -0.9 | Α | | | Note 1: Based on thermal dissipation from junction to ambient while mounted on a 1" x 1" PCB with optimized layout. A 5 second pulse on a 1" x 1" PCB approximates testing a device mounted on a large multi-layer PCB as in most applications. $R_{\theta JF} + R_{\theta FA} = R_{\theta JA}$ where the foot thermal reference is defined as the normal solder mounting surface of the device's leads. $R_{\theta JF}$ is guaranteed by design, however $R_{\theta CA}$ is determined by the PCB design. Actual maximum continuous current is limited by the application's design. Note 2: Pulse test: Pulse Width = 300 μ s Note 3: Guaranteed by design. Not subject to production testing.