Power Module 1200V IGBT Family

MG12300D-BN2MM Series 300A Dual IGBT

Agency Approvals

ittelfuse[®]

Expertise Applied | Answers Delivered

AGENCY	AGENCY FILE NUMBER
LR.	E71639

Module Characteristics ($T_c = 25^{\circ}C$, unless otherwise specified)

Symbol Parameters **Test Conditions** Min Тур Max Unit T_{Vj max)} Max. Junction Temperature 150 °C T_{vj op} **Operating Temperature** -40 125 °С 125 °C T_{stg} Storage Temperature -40 V Insulation Test Voltage AC, t=1min 3000 V Module case exposed to 0.1% ammonium CTI 350 V Comparative Tracking Index chloride solution per UL and IEC standards Module-to-Sink Recommended (M6) 5 Torque 3 N·m Module Electrodes Recommended (M6) 2.5 5 Torque N∙m Weight 320 g

Features

• High short circuit

capability, self limiting

IGBT³ CHIP(Trench+Field)

temperature coefficient

short circuit current

Stop technology)

• $V_{CE(sat)}$ with positive

ApplicationsMotor drives

Inverter

Converter

٠

Symbol	Parameters	Test Conditions	Values	Unit
IGBT	· · · · ·			
V _{CES}	Collector - Emitter Voltage	T _{vi} =25°C	1200	V
V _{ges}	Gate - Emitter Voltage	· · · · · · · · · · · · · · · · · · ·	±20	V
1	DC Collector Current	T _c =25°C	480	A
c		T _c =80°C	300	A
I _{CM}	Repetitive Peak Collector Current	t _p =1ms	600	A
P _{tot}	Power Dissipation Per IGBT		1450	W
Diode	· · · · · ·			
V _{rrm}	Repetitive Reverse Voltage	T _{vj} =25°C	1200	V
	Average Ferriverd Current	T _c =25°C	480	A
F(AV)	Average Forward Current	T _c =80°C	300	A
FRM	Repetitive Peak Forward Current	t _p =1ms	600	A
l²t		$T_{v_{f}} = 125^{\circ}C, t = 10ms, V_{B} = 0V$	18000	A ² s

Life Support Note:

Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

RoHS Я

• Fast switching and short

• Free wheeling diodes

Low switching losses

with fast and soft reverse

tail current

recovery

• SMPS and UPS

Induction Heating

• Welder

Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Electrical and Thermal Specifications ($T_c = 25^{\circ}$ C, unless otherwise specified)

Symbol	Parameters	Test Co	nditions	Min	Тур	Max	Unit
IGBT							
$V_{GE(th)}$	Gate - Emitter Threshold Voltage	V _{CF} =V _{GF} ,	I _c =12mA	5.0	5.8	6.5	V
	Collector - Emitter	I _c =300A, V _{GE} =	=15V, T _{vi} =25°C		1.7		V
/ _{CE(sat)}	Saturation Voltage	I _c =300A, V _{GE} =	=15V, T _{vi} =125°C	1	1.9		V
	Collector Leakage Current	V _{CE} =1200V, V _G	_{BE} =0V, T _{Vj} =25°C	1		1	mA
ES	Collector Leakage Current	V _{CE} =1200V, V _{GI}	=0V, T _{vj} =125°C			5	mA
ES	Gate Leakage Current	V _{CE} =0V,V _{GE} =±	15V, T _{vj} =125°C	-400		400	μΑ
Gint	Intergrated Gate Resistor				2.5		Ω
) _{ge}	Gate Charge	V _{CE} =600V, I _C =3	$00A$, $V_{GE} = \pm 15V$		2.8		μC
ies	Input Capacitance		0)/ 5 10411-		21		nF
res	Reverse Transfer Capacitance	V _{CE} =25V, V _{GE}	=0V, f =1MHz		0.85		nF
	Turn - on Delay Time		T _{vj} =25°C		160		ns
d(on)	Ium - on Delay Time		T _{vj} =125°C		170		ns
	Rise Time	V _{cc} =600V	T _{vj} =25°C		40		ns
	Tise Time	V _{CC} =000V	T _{vj} =125°C		45		ns
	Turn - off Delay Time	I _c =300A	T _{vj} =25°C		450		ns
(off)	Ium - on Delay Time	R _G =2.4Ω	T _{vj} =125°C		520		ns
	FallTime	$n_{g} = 2.411$	T _{vj} =25°C		100		ns
		$V_{GE} = \pm 15V$	T _{vj} =125°C		160		ns
on	Turn - on Energy	Inductive Load	T _{vj} =25°C		16.5		mJ
on			T _{vj} =125°C		25		mJ
off	Turn - off Energy		T _{vj} =25°C		24.5		mJ
off			T _{vj} =125°C		37		mJ
SC	Short Circuit Current		, V _{GE} =15V	_	1200		А
	lunction to Coop There al	I vj=125°C	,V _{CC} =900V				
thJC	Junction-to-Case Thermal Resistance (Per IGBT)					0.085	K/W
)iode							
/	Forward Voltage	I _F =300A , V _{GE}	=0V, T _{vj} =25°C		1.65		V
F			=0V, T _{vj} =125°C		1.65		V
RRM	Max. Reverse Recovery Current	I ₌ =300A	, V _B =600V		270		А

I _{RRM}	Max. Reverse Recovery Current	I _F =300A , V _R =600V	270	A
Q _{rr}	Reverse Recovery Charge	d _{iF} /dt=-6000A/µs	56	μC
E _{rec}	Reverse Recovery Energy	T _{vj} =125°C	26	mJ
R _{thJCD}	Junction-to-Case Thermal Resistance (Per Diode)		0.15	K/W

Specifications are subject to change without notice.

Please refer to http://www.littelfuse.com for current information.

Power Module 1200V IGBT Family

Figure 1: Typical Output Characteristics

Littelfuse

Expertise Applied | Answers Delivered

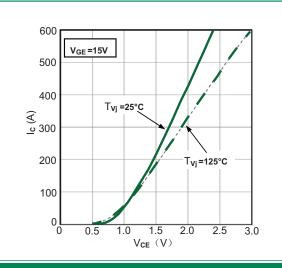


Figure 3: Typical Transfer characteristics

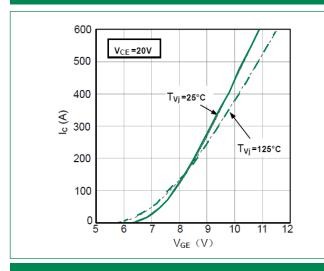
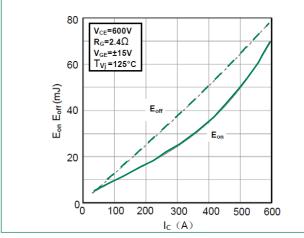
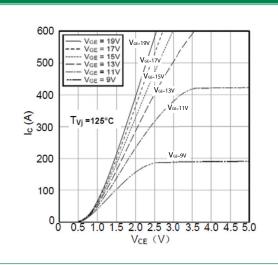




Figure 5: Switching Energy vs. Collector Current

Figure 2: Typical Output Characteristics

Figure 4: Switching Energy vs. Gate Resistor

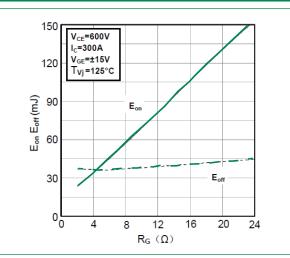
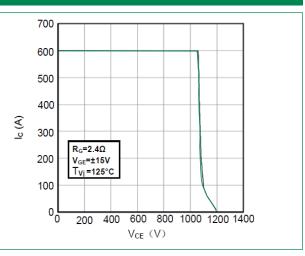
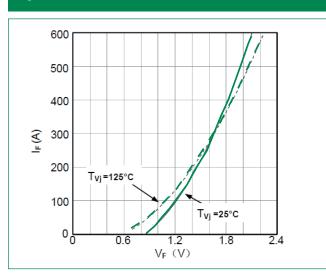



Figure 6: Reverse Biased Safe Operating Area

MG12300D-BN2MM

©2013 Littelfuse, Inc


Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Power Module 1200V IGBT Family

Figure 7: Diode Forward Characteristics

Littelfuse

Expertise Applied Answers Delivered

Figure 9: Switching Energy vs. Forward Current

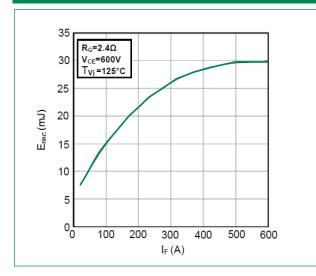
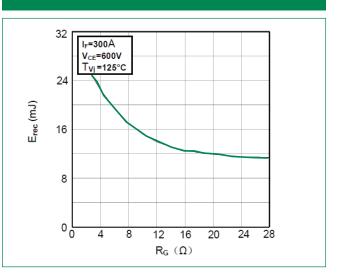
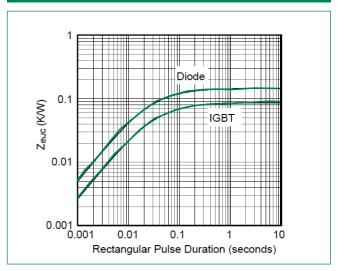
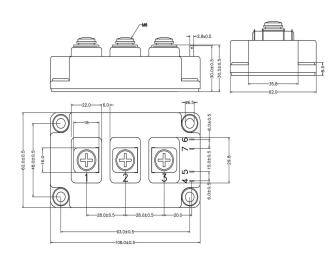
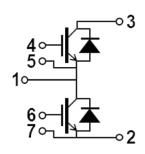
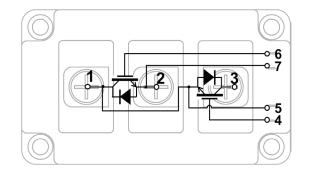




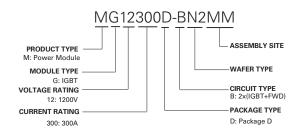
Figure 8: Switching Energy vs. Gate Resistort

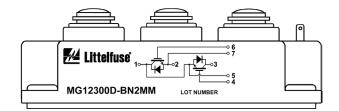

Figure 10: Transient Thermal Impedance


Dimensions-Package D


Littelfuse

Expertise Applied | Answers Delivered


Circuit Diagram and Pin Assignment



Packi	ng Options				
	Part Number	Marking	Weight	Packing Mode	M.O.Q
MG	12300D-BN2MM	MG12300D-BN2MM	320g	Bulk Pack	30

Part Numbering System

Part Marking System

