

DMG3401LSN

30V P-CHANNEL ENHANCEMENT MODE MOSFET

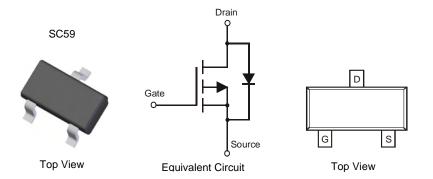
Product Summary

V _{(BR)DSS}	RDS(on) max	I _D Τ _A = 25°C
-30V	$50m\Omega$ @ $V_{GS} = -10V$	-3.7A
	$60m\Omega @ V_{GS} = -4.5V$	-3.3A
	$85m\Omega @ V_{GS} = -2.5V$	-2.7A

Description

This new generation Small-Signal enhancement mode MOSFET features low on-resistance and fast switching, making it ideal for high efficiency power management applications.

Applications

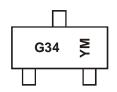

- Motor control
- Backlighting
- DC-DC Converters
- Power management functions

Features

- Low Input Capacitance
- Low On-Resistance
- Low Input/Output Leakage
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SC59
- Case Material: Molded Plastic "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram
- Weight: 0.008 grams (approximate)


Ordering Information (Note 4)

Part Number	Case	Packaging
DMG3401LSN-7	SC59	3000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Marking Information

G34 = Product Type Marking Code

YM = Date Code Marking Y = Year (ex: Y = 2011)

M = Month (ex: 9 = September)

Date Code Key

Year 2011 2012 2013 2014 2015 2016 2017													
Year	201	1	2012		2013		2014			2016	2	2017	
Code	Υ		Z		A		В			D		E	
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Code	1	2	3	4	5	6	7	8	9	0	N	D	

DMG3401LSN

Characteristic	Symbol	Value	Units		
Drain-Source Voltage	V_{DSS}	-30	V		
Gate-Source Voltage	V _{GSS}	±12	V		
Continuous Drain Current (Note 5) V _{GS} = -10V	Steady State	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	ID	-3.0 -2.3	А
Continuous Drain Current (Note 6) V _{GS} = -10V	I _D	-3.7 -2.9	А		
Pulsed Drain Current (10µs pulse, duty cycle = 1%)	I _{DM}	-30	Α		
Maximum Body Diode Continuous Current (Note 6)	I _S	-1.5	Α		

Thermal Characteristics

Characteristic	Symbol	Value	Units		
Total Power Dissipation	(Note 5)	р	0.8	W	
Total Power Dissipation	(Note 6)	P _D	1.2		
Thermal Resistance, Junction to Ambient	(Note 5)	6	159	°C/W	
Thermal Resistance, Junction to Ambient	(Note 6)	$R_{\theta JA}$	105		
Thermal Resistance, Junction to Case	(Note 6)	$R_{\theta JC}$	36		
Operating and Storage Temperature Range		T _{J,} T _{STG}	-55 to +150	°C	

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition		
OFF CHARACTERISTICS (Note 7)								
Drain-Source Breakdown Voltage	BV _{DSS}	-30	-	-	V	$V_{GS} = 0V, I_D = -250\mu A$		
Zero Gate Voltage Drain Current T _J = 25°C	I _{DSS}	-	-	-1.0	μA	$V_{DS} = -30V, V_{GS} = 0V$		
Gate-Body Leakage	I _{GSS}	-	-	±100	nA	$V_{GS} = \pm 12V, V_{DS} = 0V$		
ON CHARACTERISTICS (Note 7)			_	_				
Gate Threshold Voltage	V _{GS(th)}	-0.5	-1.0	-1.3	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$		
		ı	41	50		$V_{GS} = -10V, I_{D} = -4A$		
Static Drain-Source On-Resistance	R _{DS} (ON)	-	47	60	$m\Omega$	$V_{GS} = -4.5V$, $I_{D} = -3.5A$		
	_ (()		60	85	1	$V_{GS} = -2.5V, I_D = -2.5A$		
Forward Transfer Admittance	Y _{fs}	-	12	-	S	$V_{DS} = -5V, I_{D} = -4A$		
Diode Forward Voltage	V_{SD}		-0.8	-1.0	V	$V_{GS} = 0V, I_{S} = -1A$		
DYNAMIC CHARACTERISTICS (Note 8)								
Input Capacitance	C _{iss}	ı	1326	1				
Output Capacitance	Coss	ı	103	-	pF	$V_{DS} = -15V$, $V_{GS} = 0V$, $f = 1.0MHz$		
Reverse Transfer Capacitance	C _{rss}	-	71	-				
Gate Resistance	R_g	-	7.3	-	Ω	$V_{DS} = 0V, V_{GS} = 0V, f = 1.0MHz$		
Total Gate Charge (V _{GS} = -4.5V)	Qg	-	11.6	-				
Total Gate Charge (V _{GS} = -10V)	Qg	-	25.1	-	nC	1/ 45)/ 1 40		
Gate-Source Charge	Q _{gs}	-	2	-	nC nC	$V_{DD} = -15V, I_D = -4A$		
Gate-Drain Charge	Q_{gd}	-	1.7	-				
Turn-On Delay Time	t _{D(on)}	-	8	-				
Turn-On Rise Time	t _r	ı	13	1	nS	V _{DS} = -15V, V _{GS} = -10V,		
Turn-Off Delay Time	t _{D(off)}	-	71	-	113	$R_{GEN} = 6\Omega$, $R_L = 3.75\Omega$		
Turn-Off Fall Time	t _f	-	38	-				

Notes:

- 3. Device mounted on FR-4 PC board, with minimum recommended pad layout, single sided.
- 4. Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper pad layout 5. Short duration pulse test used to minimize self-heating effect.
- 6. Guaranteed by design. Not subject to production testing