

LS3N163 P-CHANNEL MOSFET

The LS3N163 is an enhancement mode P-Channel Mosfet

The LS3N163 is an enhancement mode P-Channel Mosfet designed for use as a General Purpose amplifier or switch

The hermetically sealed TO-72 package is well suited for high reliability and harsh environment applications.

(See Packaging Information).

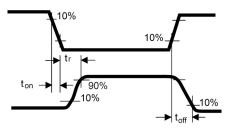
LS3N163 Features:

- Very high Input Impedance
- Low Capacitance
- High Gain
- High Gate Breakdown Voltage
- Low Threshold Voltage

FEATURES							
DIRECT REPLACEMENT FOR INTERSIL LS3N163							
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage Temperature	-65°C to +200°C						
Operating Junction Temperature	-55°C to +150°C						
Maximum Power Dissipation							
Continuous Power Dissipation	375mW						
MAXIMUM CURRENT							
Drain Current	50mA						
MAXIMUM VOLTAGES							
Drain to Gate	-40V						
Drain to Source	-40V						
Peak Gate to Source ²	±125V						

LS3N163 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS			
I_{GSSF}	Gate Forward Current	-10			pА	$V_{GS} = -40V, V_{DS} = 0V$			
	T _A = +125°C			-25					
BV_{DSS}	Drain to Source Breakdown Voltage	-40				$I_D = -10 \mu A$, $V_{GS} = 0 V$			
BV_{SDS}	Source-Drain Breakdown Voltage	-40				$I_S = -10\mu A$, $V_{GD} = 0V$, $V_{BD} = 0V$			
$V_{GS(th)}$	Gate to Source Threshold Voltage	-2.0		-5.0	V	$V_{DS} = V_{GS}$, $I_D = -10\mu A$			
		-2.0		-5.0		$V_{DS} = -15V$, $I_{D} = -10\mu A$			
V_{GS}	Gate Source Voltage	-3.0		-6.5		$V_{DS} = -15V, I_{D} = -0.5 \text{mA}$			
I _{DSS}	Drain Leakage Current "Off"			200	pА	$V_{DS} = -15V, V_{GS} = 0V$			
I _{SDS}	Source Drain Current			400		$V_{DS} = 15V$, $V_{GS} = V_{DB} = 0V$			
r _{DS(on)}	Drain to Source "On" Resistance			250	Ω	$V_{GS} = -20V$, $I_{D} = -100\mu A$		$V_{GS} = -20V$, $I_{D} = -100\mu A$	
I _{D(on)}	Drain Current "On"	-5.0		-30	mA	$V_{DS} = -15V, \ V_{GS} = -10V$			
g _{fs}	Forward Transconductance	2000		4000	μS	$V_{DS} = -15V$, $I_{D} = -10mA$, $f = 1kHz$			
gos	Out <mark>pu</mark> t Ad <mark>m</mark> itta <mark>n</mark> ce			250					
C _{iss}	Input Capacitance—Output shorted	-		2.5					
C_{rss}	Reverse Transfer Capacitance			0.7	pF	$V_{DS} = -15V$, $I_{D} = -10 \text{mA}$, $f = 1 \text{MHz}^3$			
C _{oss}	Output Capacitance-Input shorted			3.0					


SWITCHING CHARACTERISTICS - T_A = 25°C and V_{BS} = 0 unless otherwise noted

 Ov_{out}

SWITCHING TEST CIRCUIT

SYMBOL	SYMBOL CHARACTERISTIC		UNITS	CONDITIONS
t _{d(on)}	Turn On Delay Time	12		V _{DD} = -15V
t _r	Turn On Rise Time		ns	$I_{D(on)} = -10 \text{mA}$
t _{off}	Turn Off Time	50		$R_G = R_L = 1.4K\Omega^3$

TIMING WAVEFORMS

INPUT PULSE

SAMPLING SCOPE

Rise Time ≤2ns Pulse Width≥200ns T_r≤0.2ns G_N≤2pF R_{IN}≥10M

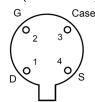
Note 1 - Absolute maximum ratings are limiting values above which LS3N163 serviceability may be impaired.

Note 2 – Device must not be tested at ± 125 V more than once or longer than 300ms.

Note 3 – For design reference only, not 100% tested

Micross Components Europe

50Ω


Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution Available Packages:

LS3N163 in TO-72 LS3N163 in bare die.

Please contact Micross for full package and die dimensions

TO-72 (Bottom View)

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.