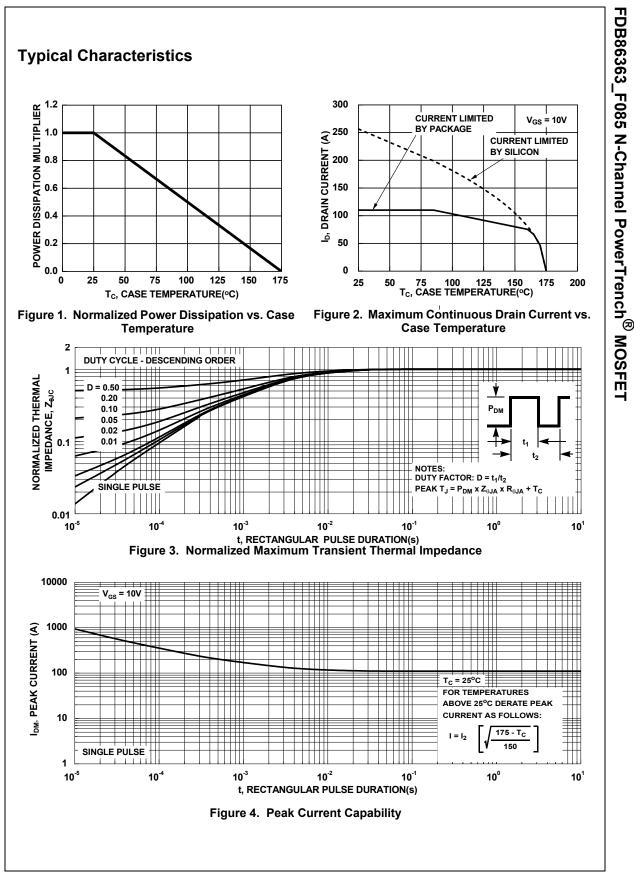


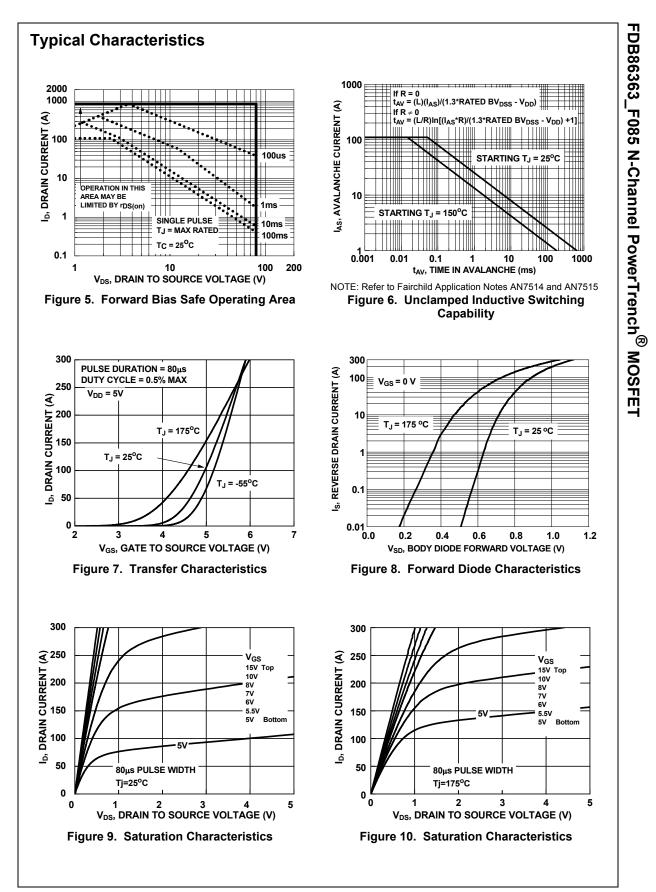
MOSFET Maximum Ratings T_J = 25°C unless otherwise noted.

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-to-Source Voltage		80	V	
V _{GS}	Gate-to-Source Voltage		±20	V	
I _D	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	110	Α	
	Pulsed Drain Current	T _C = 25°C	See Figure 4		
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	512	mJ	
P _D	Power Dissipation		300	W	
	Derate Above 25°C		2.0	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C	
R _{0JC}	Thermal Resistance, Junction to Case		0.5	°C/W	
R _{0JA}	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	43	°C/W	

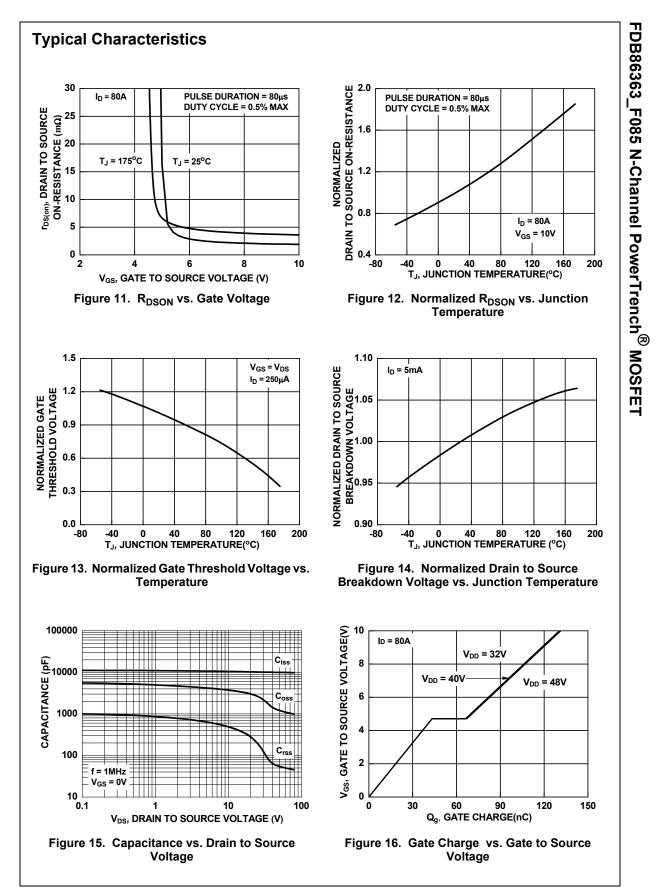
Notes:

1: Current is limited by bondwire configuration.


2: Starting $T_J = 25^{\circ}$ C, L = 0.25mH, $I_{AS} = 64A$, $V_{DD} = 80V$ during inductor charging and $V_{DD} = 0V$ during time in avalanche.


3: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design, while R_{0JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB86363	FDB86363_F085	D2-PAK(TO-263)	330mm	24mm	800 units

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
Off Cha	racteristics			I			
B _{VDSS}	Drain-to-Source Breakdown Voltage	I _D = 250μA, \	/ _{GS} = 0V	80	-	-	V
		V _{DS} =80V,		-	-	1	μA
IDSS	Drain-to-Source Leakage Current	-	$T_{\rm J} = 175^{\rm o}C$ (Note 4)	-	-	1	mA
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA
On Cha	racteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = V_{DS} , I	_D = 250μA	2.0	3.0	4.0	V
	Drain to Source On Resistance	I _D = 80A,	T _J = 25 ^o C	-	2.0	2.4	mΩ
R _{DS(on)}	Drain to Source On Resistance	V_{GS} = 10V T _J = 175 ^o C (Note 4)		-	3.8	4.3	mΩ
C _{iss}	Input Capacitance	V _{DS} = 40V, V _{GS} = 0V, f = 1MHz f = 1MHz		-	10000	-	pF
C _{oss}	Output Capacitance			-	1400	-	pF
C _{rss}	Reverse Transfer Capacitance			-	95	-	pF
R _g	Gate Resistance			-	3.3	-	Ω
Q _{g(ToT)}	Total Gate Charge at 10V	V_{GS} = 0 to 10	• 00 • •	-	131	150	nC
Q _{g(th)}	Threshold Gate Charge	$V_{GS} = 0 \text{ to } 2V$ $I_D = 80A$		-	18	21	nC
Q _{gs}	Gate-to-Source Gate Charge			-	47	-	nC
Q _{gd}	Gate-to-Drain "Miller" Charge			-	24	-	nC
	ng Characteristics			_	_	231	ns
t _{on} t _{d(on)}	Turn-On Delay			-	38	-	ns
t _r	Rise Time	V _{DD} = 40V, I	_D = 80A.	-	129	-	ns
d(off)	Turn-Off Delay	V_{GS} = 10V, R_{GEN} = 6 Ω		-	64	-	ns
f	Fall Time			-	40	-	ns
t _{off}	Turn-Off Time			-	-	135	ns
Drain-S	ource Diode Characteristics				· · ·		
V _{SD}	Source-to-Drain Diode Voltage	I_{SD} =80A, V_{GS} = 0V I_{SD} = 40A, V_{GS} = 0V		-	-	1.25	V
• SD				-	-	1.2	V
t _{rr}	Reverse-Recovery Time	$I_{F} = 80A, dI_{SD}/dt = 100A/\mu s,$		-	88	101	ns
Q _{rr}	Reverse-Recovery Charge	V _{DD} =64V		-	129	157	nC

FDB86363_F085 Rev. C2

FDB86363_F085 Rev. C2

Freinnindry		notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.