TECHNICAL DATA
DATA SHEET 5392, Preliminary.1

HERMETIC RAD HARD POWER N-CHANNEL MOSFET ARRAY

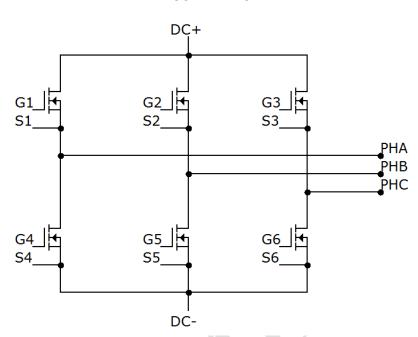
FEATURES:

- Six individual 250 Volt, 0.16 Ohm, 12.4A RAD HARD MOSFETs (1)
- Single Event Effect (SEE) hardened, LET 55, Range: 90µm
 - \circ $V_{GS} = -15V, V_{DS} = 250V$
 - \circ V_{GS} = -20V, V_{DS} = 160V
- Single Event Effect (SEE) hardened, LET 85, Range: 118μm
 - \circ $V_{GS} = -10V, V_{DS} = 250V$
 - \circ $V_{GS} = -15V, V_{DS} = 120V$
- Total Ionization Dose (TID) hardened, 100kRad (Level R)
- Fast Switching
- Low R_{DS (on)}

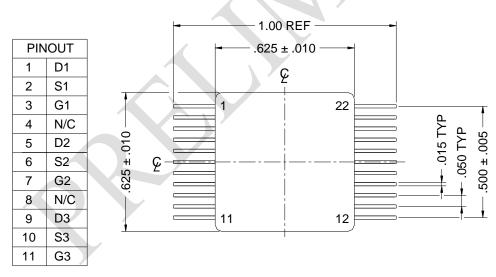
MAXIMUM RATINGS

ALL RATINGS ARE AT $T_c = 25$ °C UNLESS OTHERWISE SPECIFIED.

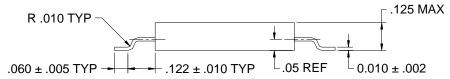
RATING	SYMBOL	MIN.	TYP.	MAX.	UNITS
GATE TO SOURCE VOLTAGE	V_{GS}	7 - 7	-	±20	Volts
ON-STATE DRAIN CURRENT	I _D		-	12.4	Amps
PULSED DRAIN CURRENT (LIMITED BY T _{JMAX})	I _{DM}	-	1	50	Amps
OPERATING AND STORAGE TEMPERATURE	T_{OP}/T_{STG}	-55		+150	°C
TOTAL DEVICE DISSIPATION	P_{D}	-	-	TBD	Watts
THERMAL RESISTANCE, JUNCTION TO CASE	R_{thJC}	-	-	TBD	°C/W
AVALANCE ENERGY	E _{AS}	-	-	60	mJ


ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNITS
DRAIN TO SOURCE BREAKDOWN VOLTAGE		BV _{DSS}	250	-	-	Volts
$V_{GS} = 0V, I_D = 250 \mu A$						
STATIC DRAIN TO SOURCE ON STATE RESISTANCE		R _{DS(ON)}				
$V_{GS} =$	$10V, I_D = 8A$, ,	-	-	0.16	Ω
GATE THRESHOLD VOLTAGE V _{DS} ≥ V	I_{GS} , $I_D = 1mA$	$V_{GS(th)}$	2.0	-	4.0	Volts
ZERO GATE VOLTAGE DRAIN CURRENT						
$V_{DS} = 20$	$00V, V_{GS} = 0V$	I _{DSS}	-	-	25	μΑ
GATE TO SOURCE LEAKAGE FORWARD	$V_{GS} = 20V$	I _{GSS}	-	-	100	nA
GATE TO SOURCE LEAKAGE REVERSE	$V_{GS} = -20V$		-	-	-100	
TURN ON DELAY TIME	$V_{DD} = 125V$	t _{d(ON)}	-	25	-	
RISE TIME	$I_D = 8A$,	t _r	-	25	-	nsec
TURN OFF DELAY TIME	$R_G = 4.7\Omega$	t _{d(OFF)}	-	30	-	
FALL TIME		t _f	-	20	-	
DIODE FORWARD VOLTAGE	$I_{S} = 12.4A$	V_{SD}	-	-	1.25	Volts
	$V_{GS} = 0V$					
REVERSE RECOVERY TIME	$V_{DD} = 125V$	t _{rr}	-	-	400	nsec
	$I_f = 12.4A$					
INPUT CAPACITANCE	$V_{GS} = 0 V$	C _{iss}	-	1300	1900	
OUTPUT CAPACITANCE	$V_{DS} = 100 \text{ V}$	C_{oss}	-	90	150	pF
REVERSE TRANSFER CAPACITANCE	f = 1.0MHz		_			


^{**}NOTE: This product is subject to the International Traffic in Arms Regulations (ITAR), 22 C.F.R. Parts 120 - 130, and may not be exported without the appropriate U.S. Department of State authorization.

TECHNICAL DATA
DATA SHEET 5392, Preliminary.1


SCHEMATIC

MECHANICAL DIMENSIONS: in Inches / mm

PINOUT				
22	G6			
21	S6			
20	D6			
19	N/C			
18	G5			
17	S5			
16	D5			
15	N/C			
14	G4			
13	S4			
12	D4			

22-Lead Flatpack

TECHNICAL DATA DATA SHEET 5392, Preliminary.1

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.