UNISONIC TECHNOLOGIES CO., LTD

USA555

LINEAR INTEGRATED CIRCUIT

PRECISION TIMERS

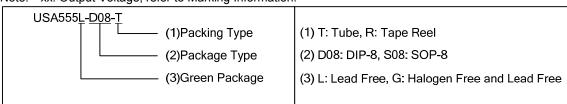
■ DESCRIPTION

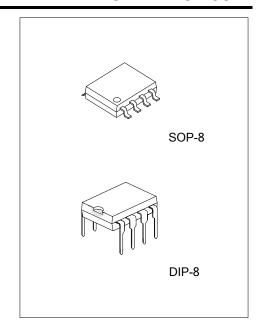
The UTC **USA555** monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network.

In the astable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor.

The threshold and trigger levels normally are two-thirds and one-third, respectively, of V_{CC} . These levels can be altered by use of the control-voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set, and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset, and the output goes low. When the output is low, a low-impedance path is provided between discharge (DISCH) and ground.

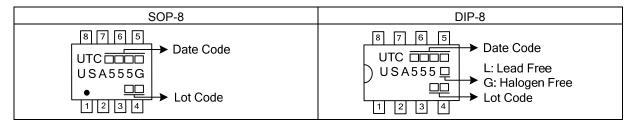
The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA. Operation is specified for supplies of 5V~15V.

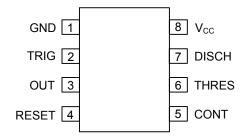

■ FEATURES


- * Astable or monostable operation
- * Low turn off time
- * Operates in both astable and monostable modes
- * Timing from microseconds to hours
- * Adjustable duty cycle
- * TTL-compatible output can sink or source up to 200mA

ORDERING INFORMATION

Ordering	Number	Dealtons	Dooking	
Lead Free	Halogen Free	Package	Packing	
-	- USA555G-S08-R		Tape Reel	
USA555L-D08-T	USA555G-D08-T	DIP-8	Tube	


Note: xx: Output Voltage, refer to Marking Information.

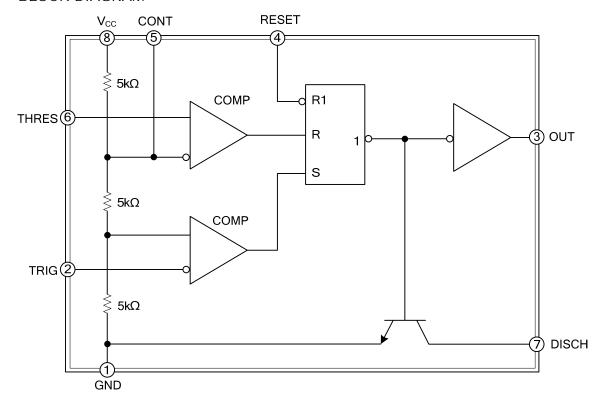


www.unisonic.com.tw 1 of 8

■ MARKING

■ PIN CONFIGURATION

■ PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION
1	GND	Ground
2	TRIG	Trigger signal
3	OUT	Output terminal
4	RESET	Reset terminal
5	CONT	Control voltage
6	THRES	Threshold
7	DISCH	Discharge
8	V_{CC}	Power supply

■ FUNCTION TABLE

RESET	TRIGGER	THRESHOLD	OUTPUT	DISCHARGE
	VOLTAGE (Note)	VOLTAGE (Note)	001701	SWITCH
Low	Irrelevant	Irrelevant	Low	On
High	< 1/3 V _{CC}	Irrelevant	High	Off
High	> 1/3 V _{CC}	> 2/3 V _{CC}	Low	On
High	> 1/3 V _{CC}	< 2/3 V _{CC}	As previously established	

Note: Voltage levels shown are nominal.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (over operating free-air temperature range, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage (Note 2)		V _{CC}	18	V
Input Voltage	CONT, RESET, THRES, TRIG	Vı	V _{CC}	V
Output Current		Io	±225	mA
Operating Virtual Junction Temperature		TJ	150	°C
Storage Temperature		T _{STG}	-65~150	°C

- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. All voltage values are with respect to GND.

■ RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range (unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	4.5~16	V
Input Voltage	Vı	Vcc	V
Output Current	I _O	±200	mA
Operating Free-Air Temperature	T _A	-40~85	°C

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Package Thermal Impedance (Note 1, 2)	SOP-8	0	97	°C/W
	DIP-8	θ_{JA}	85	°C/W

Notes: 1. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

■ ELECTRICAL CHARACTERISTICS (V_{CC}=5V~15V, T_A=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TUDES Valtage Level	.,	V _{CC} =15V	8.8	10	11.2	V
THRES Voltage Level	V_{TH}	V _{CC} =5V	2.4	3.3	4.2	V
THRES Current (Note)	I _{TH}			30	250	nA
TDIC Voltage Level	\/	V _{CC} =15V	4.5	5	5.6	V
TRIG Voltage Level	V_{TRIG}	V _{CC} =5V	1.1	1.67	2.2	V
TRIG Current	I _{TRIG}	TRIG at 0V		0.5	2	μΑ
RESET Voltage Level	V_{RESET}		0.3	0.7	1	V
DESET Current		RESET at V _{CC}		0.1	0.4	mA
RESET Current	I _{RESET}	RESET at 0V		-0.4	-1.5	mA
DISCH Switch Off-State Current	I _{DISCH}			20	100	nA
CONT Voltage (Open Circuit)	V _{CONT}	V _{CC} =15V	9	10	11	V
CONT Voltage (Open Circuit)		V _{CC} =5V	2.6	3.3	4	V
		V _{CC} =15V, I _{OL} =10mA		0.1	0.25	V
		V _{CC} =15V, I _{OL} =50mA		0.4	0.75	V
Outt \/-!t	1/0	V _{CC} =15V, I _{OL} =100mA		2	2.5	V
Low-Level Output Voltage	Vol	V _{CC} =15V, I _{OL} =200mA		2.5		V
		V _{CC} =5V, I _{OL} =5mA		0.1	0.35	V
		V _{CC} =5V, I _{OL} =8mA		0.15	0.4	V
		V _{CC} =15V, I _{OL} =-100mA	12.75	13.3		V
High-Level Output Voltage	Voн	V _{CC} =15V, I _{OL} =-200mA		12.5		V
		V _{CC} =5V, I _{OL} =-100mA	2.75	3.3		V

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Current	I _{CC}	Output Low,	V _{CC} =15V		10	15	mA
		No Load	V _{CC} =5V		3	6	mA
		Output High,	V _{CC} =15V		9	13	mA
		No Load	V _{CC} =5V	·	2	5	mA

Note: This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit of Figure 2. For example, when V_{CC} =5V, the maximum value is $R=R_A+R_B\neq 3.4M\Omega$, and for V_{CC} =15V, the maximum value is $10M\Omega$.

■ OPERATING CHARACTERISTICS (V_{CC}=5V~15V, T_A=25°C, unless otherwise noted)

PA	RAMETER	SYMBOL	TEST CONDITIONS (Note 1)	MIN	TYP	MAX	UNIT
Initial Error of Timing Interval (Note 2)	Each Timer, Monostable (Note 3)		T _A =25°C		1	3	%
	Each Timer, Astable (Note 4)				2.25		%
Temperature	Each Timer, Monostable (Note 3)		T _A =MIN~MAX		50		ppm/°C
Coefficient of Timing Interval	Each Timer, Astable (Note 4)				150		ppm/°C
Supply-Voltage	Each Timer, Monostable (Note 3)		T _A =25°C		0.1	0.5	%/V
Sensitivity of Timing Interval	Each Timer, Astable (Note 4)				0.3		%/V
Output-Pulse Rise	Time	T _R	C _L =15pF, T _A =25°C		100	300	ns
Output-Pulse Fall	Time	T _F	C _L =15pF, T _A =25°C		100	300	ns

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

- 2. Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.
- 3. Values specified are for a device in a monostable circuit similar to Figure 1, with the following component values: $R_A=2k\Omega\sim100k\Omega$, $C=0.1\mu F$.
- 4. Values specified are for a device in an astable circuit similar to Figure 2, with the following component values: $R_A=1k\Omega\sim100k\Omega$, $C=0.1\mu F$.

■ TYPICAL APPLICATION CIRCUIT

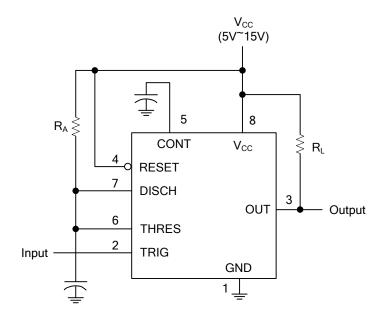
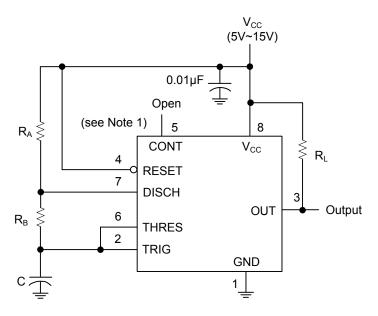
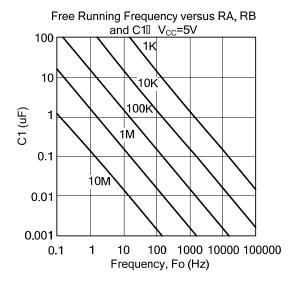
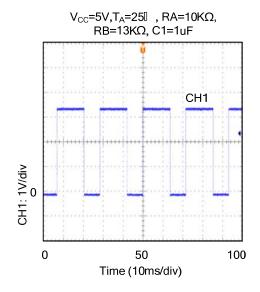
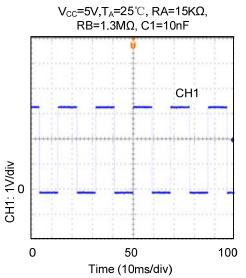
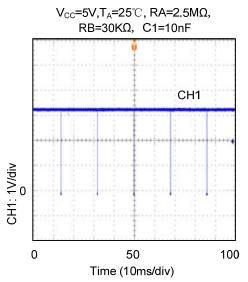



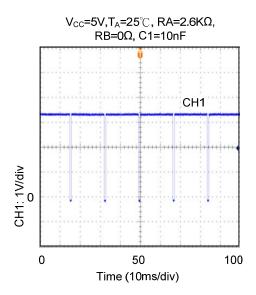
Figure 1. Circuit for Monostable Operation


Notes: 1. Decoupling CONT voltage to ground with a capacitor can improve operation.


This should be evaluated for individual applications.


- 2. T1 = 0.693 × (R_A+R_B)×C1 T2 = 0.693 × R_B × C1 $f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B) \times C1}$
- 3. Formula 0.693 values for reference only.


Figure 2. Circuit for Astable Operation


■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.