# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

# RENESAS

# R2A20115SP

Power Factor Correction Controller IC

REJ03D0923-0100 Rev.1.00 Oct 06, 2009

### Description

R2A20115 is a power-factor correction (PFC) controller IC, which employs continuous conduction mode as PFC control mode. Various kinds of functions such as constant power limit, overvoltage detection, overcurrent detection, soft start function, feedback-loop open detection, and the function holding its operation through momentary outage (PFC hold function) are incorporated in a single chip. These functions reduce external circuitry.

The constant power limit function significantly reduces "coil vibration", which is caused by the operation of a conventional overcurrent detection circuit when the system is overloaded.

The PFC hold function enables quick recovery by keeping PFC operation active for a certain duration (hold time) during momentary outage/power failure. The hold time can be adjusted by an external capacitor.

This IC provides the separated pin used for detecting overcurrent, so that, the preset current value range for overcurrent detection becomes wider than before.

The shutdown function with latch mode is also implemented.

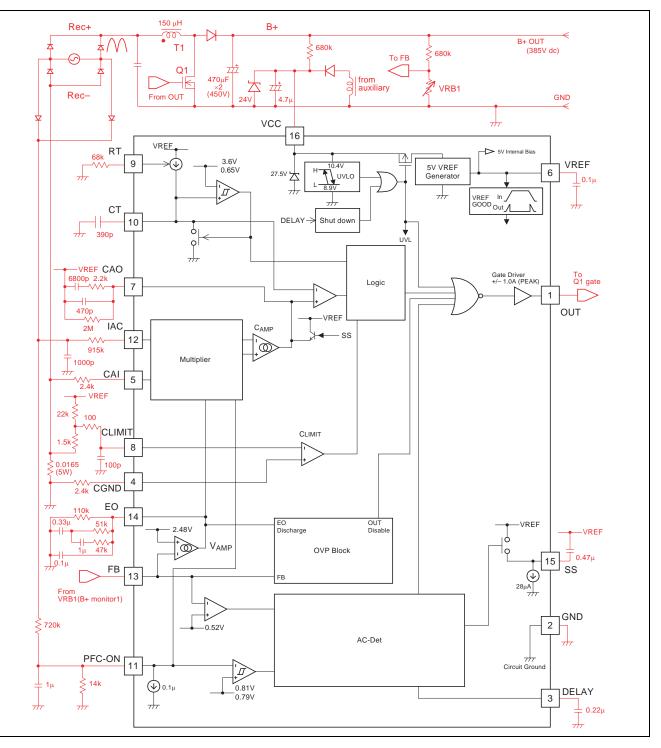
A soft-start control pin is provided for the easy adjustment of soft-start operation.

And also the dynamic over voltage protection function integrated in this IC reduces overshooting of the output voltage, which might occur for the duration of startup, recovery after momentary power failure and just after a sudden variation of a load.

## Features

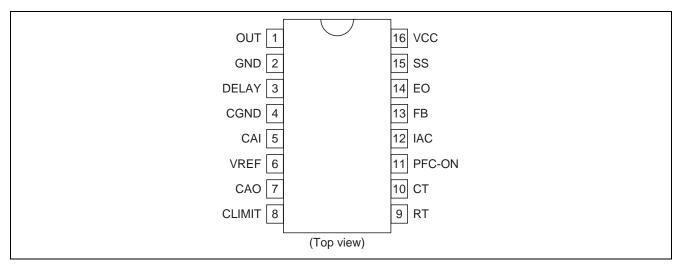
- Maximum ratings
  - Power-supply voltage Vcc: 24 V
  - Operating junction temperature Tjopr: 40 to 150°C
- Electrical characteristics

  - UVLO operation start voltage VH:  $10.4 \pm 0.7$  V
  - UVLO operation stop voltage VL:  $8.9 \pm 0.5$  V
  - PFC output maximum ON duty Dmax-out: 95% (typ.)
- Functions
  - Constant power limit function
  - Continuous conduction mode
  - Hold function of PFC operation on momentary outage (PFC hold function)
  - Overvoltage detection
  - Overcurrent detection
  - Soft start
  - Feedback loop disconnection detection
  - IC shutdown function
  - Dynamic OVP (Over Voltage Protection)
  - Package lineup: SOP-16


### Applications

- Flat panel display
- Projector
- Desktop PC
- White goods

### **Ordering Information**


| Part No.     | Part No. Package Name |              | Taping Spec.                 |  |
|--------------|-----------------------|--------------|------------------------------|--|
| R2A20115SPW0 | FP-16DAV              | PRSP0016DH-B | 2000 pcs./one taping product |  |

## System Diagram



RENESAS

## **Pin Arrangement**



# **Pin Description**

| Pin No. | Pin Name | I/O          | Function                                                                                             |
|---------|----------|--------------|------------------------------------------------------------------------------------------------------|
| 1       | OUT      | Output       | Power MOS FET gate driver output                                                                     |
| 2       | GND      | —            | Ground                                                                                               |
| 3       | DELAY    | Input/Output | Hold time adjust and IC shutdown                                                                     |
| 4       | CGND     | Input        | Non-inverting input of current amplifier                                                             |
| 5       | CAI      | Input/Output | Inverting input of current amplifier and Current output for PFC control                              |
| 6       | VREF     | Output       | Reference voltage output                                                                             |
| 7       | CAO      | Output       | Current amplifier output                                                                             |
| 8       | CLIMIT   | Input        | Overcurrent detection                                                                                |
| 9       | RT       | Input/Output | Timing resistor for settings of operational frequency, and the maximum CAI pin and DELAY pin current |
| 10      | CT       | Output       | Timing capacitor for operational frequency adjust                                                    |
| 11      | PFC-ON   | Input        | Detection of input AC voltage level                                                                  |
| 12      | IAC      | Input        | Detection of input AC waveform                                                                       |
| 13      | FB       | Input        | Voltage amplifier input                                                                              |
| 14      | EO       | Output       | Voltage amplifier output                                                                             |
| 15      | SS       | Output       | Timing capacitor for soft-start time adjust                                                          |
| 16      | VCC      | Input        | Power supply voltage input                                                                           |

# **Absolute Maximum Ratings**

|                                |           |               |      | (Ta = 25°C) |
|--------------------------------|-----------|---------------|------|-------------|
| Item                           | Symbol    | Ratings       | Unit | Note        |
| Supply voltage                 | VCC       | 24            | V    |             |
| OUT peak current               | lpk-out   | ±1.0          | A    | 3           |
| OUT DC current                 | ldc-out   | ±0.1          | A    |             |
| Terminal voltage               | Vi-group1 | -0.3 to Vcc   | V    | 4           |
|                                | Vi-group2 | –0.3 to Vref  | V    | 5           |
| CAO voltage                    | Vcao      | –0.3 to Vcaoh | V    |             |
| EO voltage                     | Veo       | –0.3 to Veoh  | V    |             |
| DELAY voltage                  | Vdelay    | -0.3 to +6.5  | V    |             |
| CAI voltage                    | Vi-cs     | -1.5 to +0.3  | V    |             |
| RT current                     | Irt       | -200          | μA   |             |
| IAC current                    | liac      | 0.6           | mA   |             |
| VREF current                   | lo-ref    | -5            | mA   |             |
| Power dissipation              | Pt        | 1             | W    | 6           |
| Operating junction temperature | Tj-opr    | -40 to +150   | °C   |             |
| Storage temperature            | Tstg      | -55 to +150   | °C   |             |

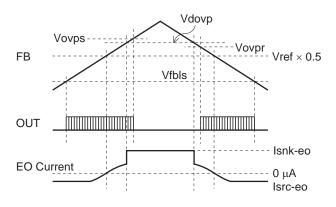
Notes: 1. Rated voltages are with reference to the GND pin.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. The transient current when driving capacitive load.
- 4. This is the rated voltage for the following pin:
- OUT. 5. This is the rated voltage for the following pins:
  - CGND, VREF, CLIMIT, RT, CT, PFC-ON, IAC, FB, SS
- 6. Thermal resistance of packages

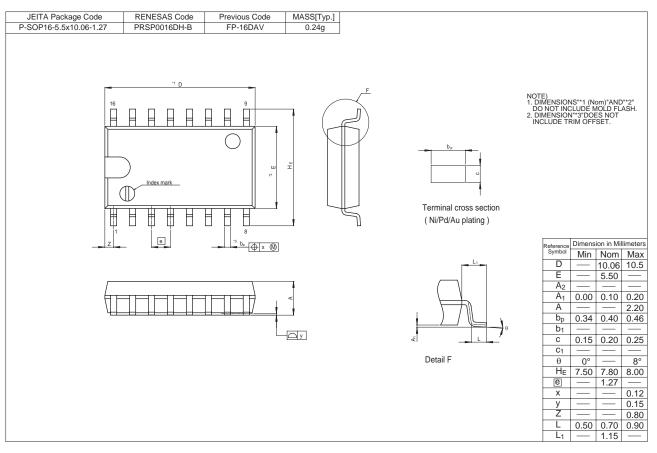
| Package | θja     | θјс    | Note                                                           |
|---------|---------|--------|----------------------------------------------------------------|
| SOP16   | 120°C/W | —      | $40 \times 40 \times 1.6$ [mm],                                |
|         |         |        | Mounted on a glass epoxy printed board with 10% wiring density |
|         |         | 35°C/W | Infinite heat sink                                             |

# **Electrical Characteristics**

| Item       |                            | Symbol    | Min  | Тур   | Max  | Unit   | Test Conditions                       |
|------------|----------------------------|-----------|------|-------|------|--------|---------------------------------------|
| Supply     | Start threshold            | VH        | 9.7  | 10.4  | 11.1 | V      |                                       |
|            | Shutdown threshold         | VL        | 8.4  | 8.9   | 9.4  | V      |                                       |
|            | UVLO hysteresis            | dVUVL     | 1.0  | 1.5   | 2.0  | V      |                                       |
|            | Startup current            | ls        | 75   | 100   | 145  | μΑ     | VCC = 9.5 V                           |
|            | Is temperature stability   | dls/dTa   | —    | -0.3  | —    | %/°C   | *1                                    |
|            | Operating current          | lcc       | 2.4  | 3.4   | 4.4  | mA     | IAC = 0 A, CL = 0 F                   |
| VREF       | Output voltage             | Vref      | 4.92 | 5.00  | 5.08 | V      | Isource = 1 mA                        |
|            | Line regulation            | Vref-line | —    | 5     | 20   | mV     | Isource = 1 mA,<br>VCC = 12 V to 23 V |
|            | Load regulation            | Vref-load |      | 5     | 20   | mV     | Isource = 1 mA to 5 mA                |
|            | Temperature<br>stability   | dVref     | —    | ±80   | —    | ppm/°C | Ta = -40 to 125°C * <sup>1</sup>      |
| Oscillator | Initial accuracy           | fout      | 55.0 | 61.0  | 67.0 | kHz    | Measured pin: OUT                     |
|            | fout temperature stability | dfout/dTa | _    | ±0.1  | —    | %/°C   | Ta = -40 to 125°C * <sup>1</sup>      |
|            | fout voltage stability     | fout-line | -1.5 | 0.5   | 1.5  | %      | VCC = 12 V to 18 V                    |
|            | CT peak voltage            | Vct-H     | _    | 3.6   | 4.0  | V      | *1                                    |
|            | Ramp valley voltage        | Vct-L     | _    | 0.65  | —    | V      | *1                                    |
|            | RT voltage                 | Vrt       | 1.18 | 1.22  | 1.26 | V      |                                       |
| Soft start | Sink current               | lss       | 17.0 | 28.0  | 39.0 | μA     | SS = 2 V                              |
| Current    | Threshold voltage          | VCL       | -15  | 0     | 15   | mV     |                                       |
| limit      | Delay to output            | td-CL     | _    | 200   | 300  | ns     | CLIMIT = 1  to  -0.3  V               |
| VAMP       | Feedback voltage           | Vfb       | 2.44 | 2.48  | 2.52 | V      | FB-EO Short                           |
|            | Input bias current         | lfb       | -0.3 | -0.15 | 0    | μΑ     | Measured pin: FB                      |
|            | Open loop gain             | Av-v      | _    | 53    | _    | dB     | *1                                    |
|            | High voltage               | Veoh      | 4.75 | 4.9   | 5.05 | V      | FB = 2.3 V, EO: Open                  |
|            | Low voltage                | Veol      | _    | 0.1   | 0.3  | V      | FB = 2.7 V, EO: Open                  |
|            | Source current             | Isrc-eo   | -180 | -120  | -80  | μA     | FB = 1.0 V, EO = 2.5 V * <sup>1</sup> |
|            | Sink current               | lsnk-eo   | —    | 350   | —    | μA     | FB = 4.0 V, EO = 2.5 V * <sup>1</sup> |
|            | Transconductance           | Gm-v      | 120  | 180   | 240  | μA/V   | FB = 2.5 V, EO = 2.5 V                |
| CAMP       | Input offset voltage       | Vio-ca    | -10  |       | 0    | mV     | *1                                    |
|            | Open loop gain             | Av-ca     |      | 55    | —    | dB     | *1                                    |
|            | High voltage               | Vcaoh     | 4    | 4.5   | 5    | V      |                                       |
|            | Low voltage                | Vcaol     |      | 0.1   | 0.3  | V      |                                       |
|            | Source current             | Isrc-ca   | -150 | -105  | -67  | μΑ     | CAO = 2.5 V                           |
|            | Sink current               | Isnk-ca   | 67   | 105   | 150  | μA     | CAO = 2.5 V                           |
|            | Transconductance           | Gm-c      | 420  | 660   | 890  | μA/V   | *1                                    |


Note: 1. Design spec.

# Electrical Characteristics (cont.)


| $(Ta = 25^{\circ}C, VCC = 12 V, RT = 27 k\Omega, CT =$ |                                     |                  |       |       |       |      | V, $RT = 27 \text{ k}\Omega$ , $CT = 1000 \text{ pF}$ ) |
|--------------------------------------------------------|-------------------------------------|------------------|-------|-------|-------|------|---------------------------------------------------------|
| Item                                                   |                                     | Symbol           | Min   | Тур   | Max   | Unit | Test Conditions                                         |
| IAC/                                                   | IAC pin voltage                     | Viac             | 0.4   | 1.4   | 2.0   | V    | IAC = 100 μA                                            |
| Multiplier                                             | Imo current 1                       | lmo1             | -57   | -47   | -37   | μA   | EO = 2.5 V, IAC = 150 μA                                |
|                                                        |                                     |                  |       |       |       |      | PFC-ON = 1.2 V                                          |
|                                                        | Imo current 2                       | lmo2             | -158  | -125  | -91.5 | μA   | EO = Vcaoh, IAC = 150 $\mu$ A                           |
|                                                        |                                     |                  |       |       |       |      | PFC-ON = 1.2 V                                          |
|                                                        | Imo current 3                       | lmo3             | -35.5 | -30   | -24.5 | μΑ   | EO = 2.5 V, IAC = 375 μA                                |
|                                                        |                                     |                  |       |       |       |      | PFC-ON = 2.5 V                                          |
|                                                        | Imo current 4                       | lmo4             | -98.5 | -80   | -61.5 | μA   | EO = Vcaoh, IAC = 375 μA<br>PFC-ON = 2.5 V              |
| OUT                                                    | Minimum duty avala                  | Dmin out         |       |       | 0     | %    | CAO = 4.0 V                                             |
| 001                                                    | Minimum duty cycle                  | Dmin-out         |       |       | 98    | %    | CAO = 4.0 V<br>CAO = 0 V                                |
|                                                        | Maximum duty cycle                  | Dmax-out         | 90    | 95    |       |      | CAO = 0 V<br>CL = 1000 pF                               |
|                                                        | Rise time                           | tr-out           |       | 30    | 100   | ns   | CL = 1000 pF<br>CL = 1000 pF                            |
|                                                        | Fall time                           | tf-out           |       | 30    | 100   | ns   | · · · · · · · · · · · · · · · · · · ·                   |
|                                                        | Low voltage                         | Vol1-out         |       | 0.08  | 0.2   | V    | lout = 20  mA                                           |
|                                                        |                                     | Vol2-out         |       | 0.5   | 2.0   | V    | lout = 200 mA (Pulse test)                              |
|                                                        |                                     | Vol3-out         | —     | 0.07  | 0.7   | V    | lout = 10 mA, VCC = 5 V                                 |
|                                                        | High voltage                        | Voh1-out         | 11.5  | 11.9  | —     | V    | lout = -20  mA                                          |
| 0                                                      |                                     | Voh2-out         | 10.0  | 11.0  |       | V    | lout = $-200 \text{ mA}$ (Pulse test)                   |
| Shut down                                              | Shut down voltage                   | Vshut            | 3.30  | 4.00  | 4.70  | V    | Input: DELAY                                            |
|                                                        | Reset voltage                       | Vres             |       |       | 4.0   | V    | Input: Vcc                                              |
| <u> </u>                                               | Shut down current                   | Ishut            | 45    | 95    | 190   | μΑ   | VCC = 9 V                                               |
| Supervisor                                             | PFC enable voltage                  | Von-pfc          | 0.73  | 0.81  | 0.89  | V    | Input pin: PFC-ON                                       |
|                                                        | PFC disable voltage                 | Voff-pfc         | 0.71  | 0.79  | 0.86  | V    | Input pin: PFC-ON                                       |
|                                                        | PFC disable delay threshold voltage | Vd-pfc           | 1.10  | 1.20  | 1.30  | V    | Input pin: DELAY                                        |
|                                                        | Input current                       | lpfc-on          | -1.0  | -0.2  | 1     | μA   | PFC-ON = 2 V                                            |
|                                                        | B+ OVP set voltage                  | dVovps           | 0.125 | 0.188 | 0.250 | V    | Input pin: FB * <sup>2</sup>                            |
|                                                        | B+ OVP reset<br>voltage             | dVovpr           | 0.010 | 0.050 | 0.100 | V    | Input pin: FB * <sup>2</sup>                            |
|                                                        | Dynamic OVP                         | dVdovp           | 0.045 | 0.065 | 0.085 | V    | Input pin: FB * <sup>2</sup>                            |
|                                                        | set/reset voltage                   | \ <i>/f</i>  _1_ | 0.47  | 0.50  | 0.57  |      | lagert give ED                                          |
|                                                        | FB low set voltage                  | Vfbls            | 0.47  | 0.52  | 0.57  | V    | Input pin: FB                                           |
|                                                        | DELAY source                        | Isrc-delay       | -50.5 | -45.5 | -40.5 | μA   | DELAY = 1 V<br>PT = 27 kO                               |
|                                                        | Current                             | look dolou       |       | 015   |       |      | RT = 27 kΩ<br>DELAY = 1 V                               |
|                                                        | DELAY sink current                  | Isnk-delay       | —     | 815   | —     | μΑ   | DELAY = 1 V<br>RT = 27 kΩ * <sup>1</sup>                |
|                                                        |                                     |                  |       |       |       |      | 1XI = ZI NSZ                                            |

Notes: 1. Design spec.

2.  $dVovps = Vovps - Vref \times 0.5$  $dVovpr = Vovpr - Vref \times 0.5$  $dVdovp = Vdovp - Vref \times 0.5$ 



### **Package Dimensions**



### RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
  Pines
  This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
  This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
  The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
  The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
  Al Information included in this document, but as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, and their document.
  Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set descondure sequired by the date was and the date their document.
  When using or otherwise regulations in the failure of moleculation in the date their document.
  When using or otherwise regulations in the failure of the tess assumes no liability whatsoever for any damages incurred as a failure of their document.
  When using or otherwise r



#### **RENESAS SALES OFFICES**

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

#### Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

#### Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com