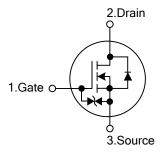
UTC UNISONIC TECHNOLOGIES CO., LTD

UTT6N10Z

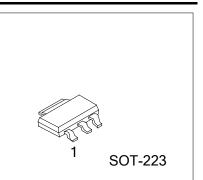
100V, 6A N-CHANNEL POWER MOSFET

DESCRIPTION


The UTC **UTT6N10Z** is an N-channel enhancement mode Power FET, it uses UTC's advanced technology to provide customers a minimum on-state resistance, high switching speed and ultra low gate charge.

The UTC **UTT6N10Z** is usually used in DC-DC Conversion.

FEATURES


- * $R_{DS(on)}$ =80m Ω @V_{GS} = 10 V,I_D=6A
- * High Switching Speed
- * Low Crss (Typically 3.1pF)
- * Low Gate Charge(Typically 4.3nC)

ORDERING INFORMATION

Ordering Number		Deelvere	Pin Assignment			Decking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT6N10ZL-AA3-R	UTT6N10ZG-AA3-R	SOT-223	G	D	S	Tape Reel	
Note: Pin Assignment: G: Gate D: Drain S: Source							
UTT6N10ZL-AA3-R (1)Packing Type (2)Package Type (3)Lead Free		(1) R: Tape Reel (2) AA3: SOT-223 (3) L: Lead Free, G: Halogen Free					

Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_c=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	100	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current	Continuous	ID	6	А
	Pulsed	I _{DM}	24	А
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	12	mJ
Power Dissipation	T _A =25°C (Note 1)	PD	2.2	W
Junction Temperature		T_J	150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

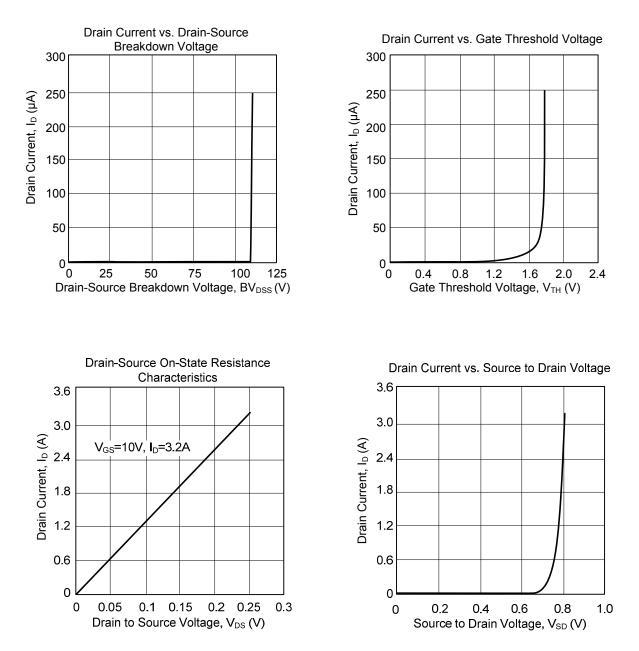
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient (Note 1)	θ _{JA}	55	°C/W	
Junction to Case	θ _{JC}	12	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μΑ, V _{GS} =0V				V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	μA	
Cata Source Leakage Current Forward		V _{GS} =+20V, V _{DS} =0V			+10	μA	
Gate-Source Leakage Current Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-10	μA	
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA			2.2	V	
Statia Duain Course On State Desistance	R _{DS(ON)}	V _{GS} =10V, I _D =6A		80	108	mΩ	
Static Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =3A		100	153	mΩ	
DYNAMIC PARAMETERS							
Input Capacitance	CISS	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		234	315	рF	
Output Capacitance	Coss			46	65	рF	
Reverse Transfer Capacitance	C _{RSS}			3.1	5	рF	
SWITCHING PARAMETERS							
Total Gate Charge	Q_{G}	V _{GS} =10V, V _{DD} =25V, I _D =6A		4.3	7	nC	
Gate to Source Charge	Q_{GS}	V _{DD} =50V, I _D =6A		0.7		nC	
Gate to Drain Charge	Q_{GD}	V _{DD} =50V, I _D =6A		0.9		nC	
Turn-ON Delay Time	t _{D(ON)}			3.8	10	ns	
Rise Time	t _R	V _{DD} =50V, I _D =6A, V _{GS} =10V, R _{GEN} =6Ω		1.3	10	ns	
Turn-OFF Delay Time	t _{D(OFF)}			10	20	ns	
Fall-Time	t _F			1.5	10	ns	
SOURCE- DRAIN DIODE RATINGS AND	CHARACTERI	STICS					
ssDrain-Source Diode Forward Voltage	V _{SD}	I _S =6A, V _{GS} =0V (Note 2) 0		0.86	1.3	V	
Maximum Body-Diode Continuous Current	ls				6	А	
Source Current Pulsed	I _{SM}				24	А	

Notes: 1. θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

 θ_{JC} is guaranteed by design while θ_{JA} is determined by the user's board deign.


2. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%

3. Starting T_J = 25°C, L =11mH, I_{AS} =6A, V_{DD} = 90V, V_{GS}=10V.

UTT6N10Z

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

