

ACE5801

P-Channel Power MOSFET

Description

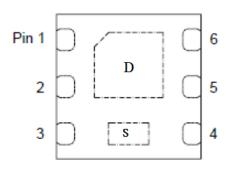
The ACE5801 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltage.

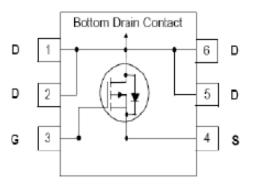
. This device is suitable for use as a load switching application and a wide variety of other applications.

Features

- Advanced trench MOSFET process technology
- Ultra low on-resistance with low gate charge

Applications

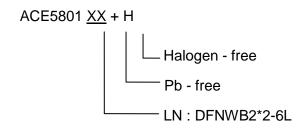

- PWM application
- Load switch
- Battery charge in cellular handset


Absolute Maximum Ratings

Parameter	Symbol	Max	Unit	
Drain-Source Voltage	V_{DSS}	-12	V	
Gate-Source Voltage	V_{GSS}	±8	V	
Drain Current-Continuous	I _D	-16	Α	
Drain Current-Pulsed (note 1)	I _{DM}	-65		
Power Dissipation (note 2, $T_A=25^{\circ}C$)	В	2.5	W	
Maximum Power Dissipation (note 3, $T_C=25^{\circ}C$)	P _D	18		
Thermal Resistance from Junction to Ambient (note 4)	$R_{\theta JA}$	50	°C/W	
Thermal Resistance from Junction to case (note 4)	$R_{\theta JC}$	6.9		
Junction Temperature	TJ	150	$^{\circ}\! \mathbb{C}$	
Storage Temperature	T_{STG}	-55~150		

Packaging Type

DFNWB2*2-6L



- 1. DRAIN
- 2. DRAIN
- 3. GATE
- 4. SOURCE
- 5. DRAIN
- 6. DRAIN

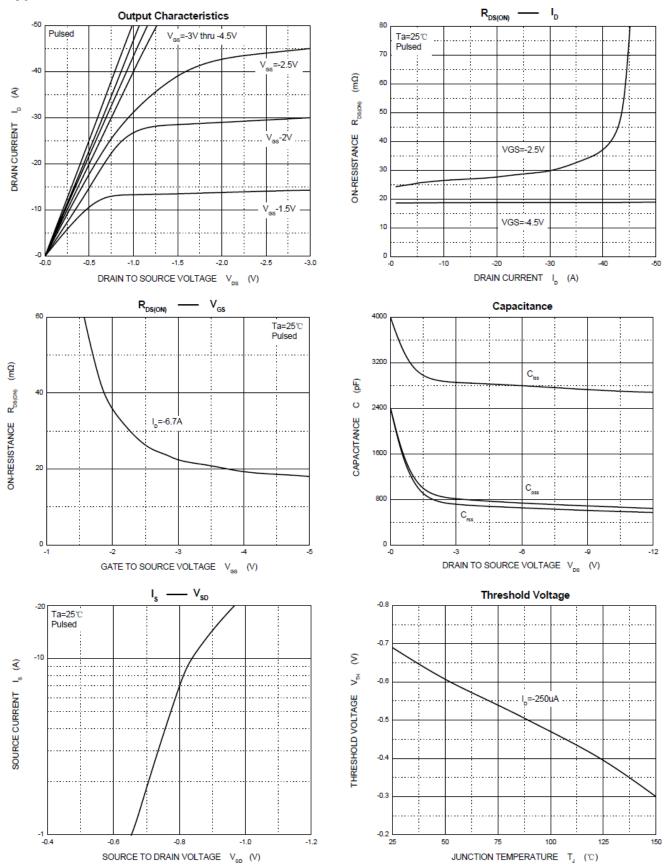
ACE5801 P-Channel Power MOSFET

Ordering information

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Off characteristics								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250uA -12				V		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-12V, V_{GS} =0V			-1	uA		
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm 8V, V_{DS}=0V$			±100	nΑ		
On characteristics (note 5)								
Drain-Source On-state Resistance	R _{DS(ON)}	V_{GS} =-4.5V, I_{D} =-6.7A			21	mΩ		
		V_{GS} =-2.5V, I_{D} =-6.2A			27			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.4	-0.7	-1	>		
Forward Transconductance	g FS	V _{DS} =-10V, I _D =-6.7A		40		S		
Dynamic characteristics (note 6)								
Input Capacitance	C _{iss}			2700		pF		
Output Capacitance	C _{oss}	V_{DS} =-10V, V_{GS} =0V f=1 MHz		680				
Reverse Transfer Capacitance	C_{rss}	1-1 1011 12		590				
Total Gate Charge	Q_g	V_{DS} =-6V, V_{GS} =-8V, I_{D} =-10A		60	100			
)/ 0)/)/ 4.5)/		35	48	nC		
Gate-Source Charge	Q_{gs}	V_{DS} =-6V, V_{GS} =-4.5V, I_{D} =-10A		5				
Gate-Drain Charge	Q_{gd}	ID=-TOA		10				
Drain-source diode characteristics								
Diode Forward Current (note 5)	Is				-16	Α		
Diode Forward Voltage (note 4)	V_{SD}	I _S =-1.6A,V _{GS} =0V	-0.5		-1.2	V		

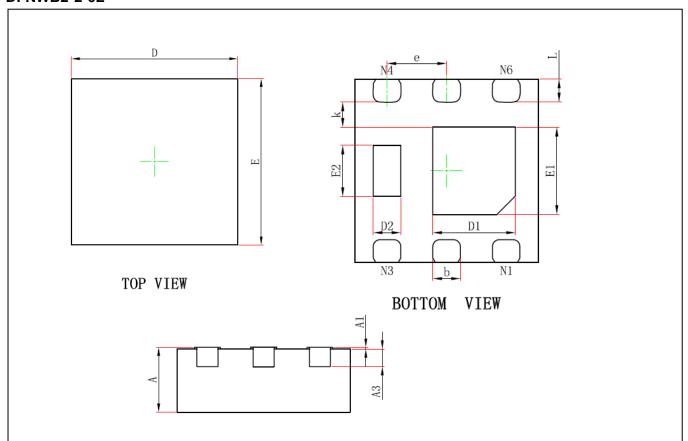
Note:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. This test is performed with no heat sink at Ta=25 $^{\circ}\!\mathbb{C}$.
- 3. This test is performed with infinite heat sink at Tc=25 $^{\circ}$ C .
- 4. Surface mounted on FR4 board, t≤10S.
- 5. Pulse Test: Pulse With ≤300µs, Duty Cycle≤2%.
- 6. Guaranteed by design, not subject to production testing.

ACE5801

P-Channel Power MOSFET

Typical Performance Characteristics



Packing Information

DFNWB2*2-6L

SIDE VIEW

Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008REF.		
D	1.924	2.076	0.076	0.082	
E	1.924	2.076	0.076	0.082	
D1	0.800	1.000	0.031	0.039	
E1	0.850	1.050	0.033	0.041	
D2	0.200	0.400	0.008	0.016	
E2	0.460	0.660	0.018	0.026	
k	0.200MIN.		0.008MIN.		
b	0.250	0.350	0.010	0.014	
е	0.650TYP.		0.026TYP.		
L	0.174	0.326	0.007	0.013	

ACE5801 P-Channel Power MOSFET

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/