N-Channel Power MOSFET 100 V, 25 A, 50 m Ω , Logic Level

Features

- Low R_{DS(on)}
- 100% Avalanche Tested
- AEC-Q101 Qualified
- These Devices are Pb-Free and are RoHS Compliant

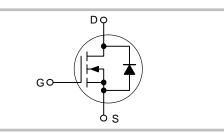
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	100	V
Gate-to-Source Voltage - Continuous			V _{GS}	±20	V
Continuous Drain Current	Steady	, ,		25	А
Current	State $T_{\rm C} = 100^{\circ}{\rm C}$			18	
Power Dissipation	Steady State	T _C = 25°C	P _D	83	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	80	А
Operating and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			۱ _S	25	А
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 50 Vdc, V _{GS} = 10 Vdc, I _{L(pk)} = 23 A, L = 0.3 mH, R _G = 25 Ω)			E _{AS}	79	mJ
Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds			ΤL	260	°C

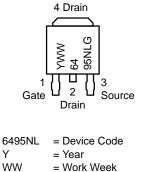
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) - Steady State	$R_{\theta JC}$	1.8	°C/W
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	39	


1. Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
100 V	54 mΩ @ 4.5 V	25 A	
100 V	50 m Ω @ 10 V		

MARKING DIAGRAM & PIN ASSIGNMENT

= Pb-Free Package

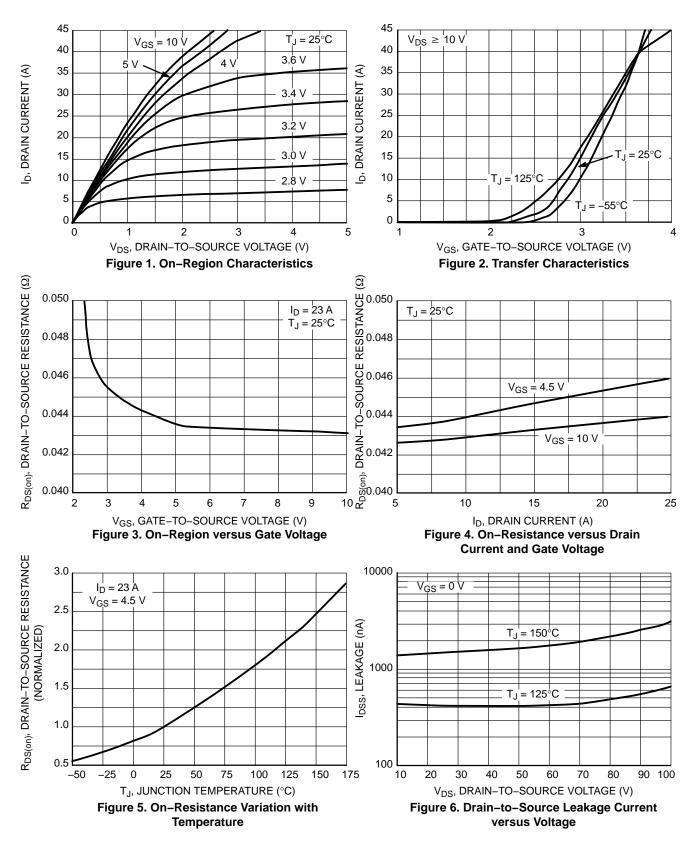
G

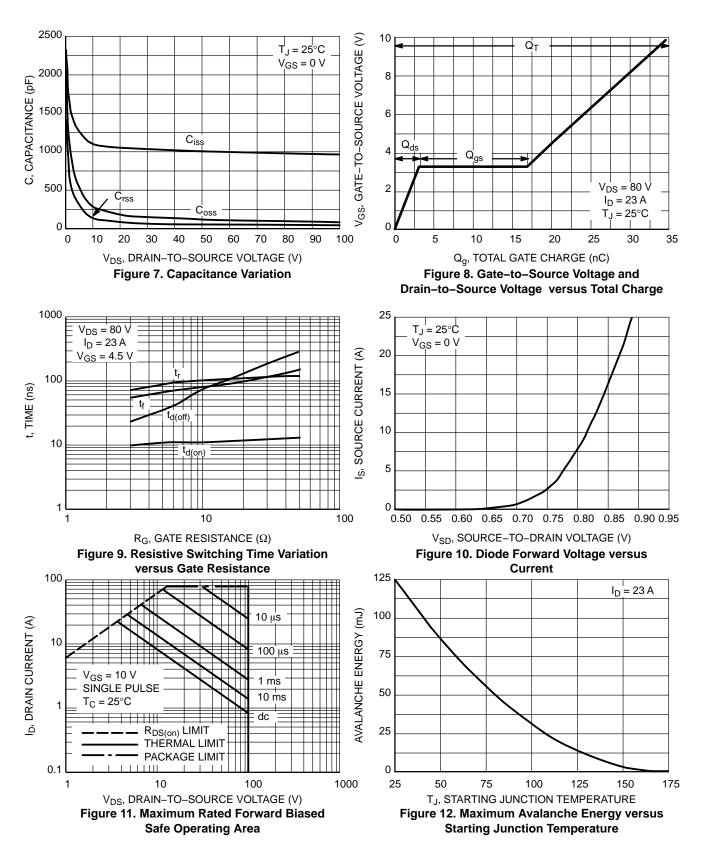
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}			100 92			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$				115		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 100 V	T _J = 25°C T _J = 125°C			1.0 100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$				±100	nA
ON CHARACTERISTICS (Note 2)						1	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 1$	250 μΑ	1.0		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D :	= 10 A		44	54	mΩ
		V _{GS} = 10 V, I _D = 10 A			43	50	
Forward Transconductance	9 FS	V _{DS} = 5.0 V, I _D = 10 A			24		S
CHARGES, CAPACITANCES AND GAT	E RESISTAN	CE					
Input Capacitance	C _{ISS}				1024		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			156		1
Reverse Transfer Capacitance	C _{RSS}				70		
Total Gate Charge	Q _{G(TOT)}				20		nC
Threshold Gate Charge	Q _{G(TH)}				1.1		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 80	V, I _D = 23 A		3.1		
Gate-to-Drain Charge	Q _{GD}				14		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 80	V, I _D = 23 A		35		nC
SWITCHING CHARACTERISTICS (Not	e 3)						
Turn-On Delay Time	t _{d(on)}				11		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD}	= 80 V,		91		
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 23 \text{A}, \text{R}_{\rm G} =$			40		
Fall Time	t _f				71		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 23 A$	T _J = 25°C T _J = 125°C		0.87 0.74	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/μs, I _S = 23 A			64		ns
Charge Time	T _a				40		-
Discharge Time	T _b				24		
0	-						nC
Reverse Recovery Charge	Q _{RR}				152		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.


3. Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION

Device	Package	Shipping [†]
NVD6495NLT4G	DPAK (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

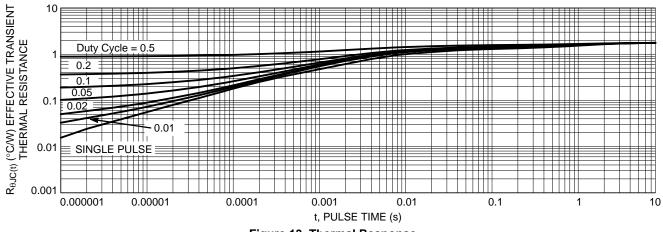
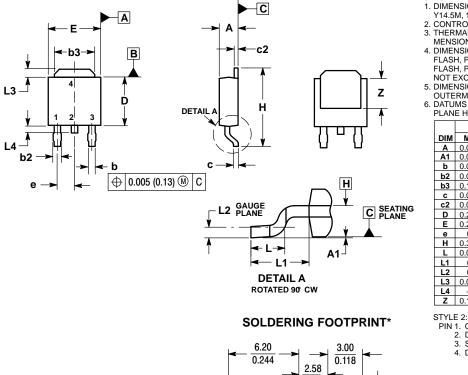
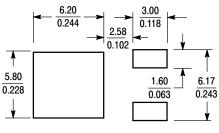



Figure 13. Thermal Response

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)


CASE 369AA-01 **ISSUE B**

NOTES

- 1 DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL
- NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	0.108 REF		REF	
L2	0.020	0.020 BSC		BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

PIN 1. GATE 2. DRAIN 3. SOURCE

mm

SCALE 3:1

4 DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarrest are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed Solitzo wins in engine to solitze and induced in gradients, and entities, and entities, and entities of solitzed and endities of the or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative