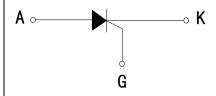
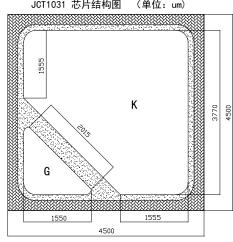
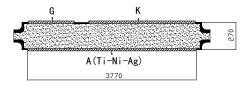
JCT1031/JCT1231 型标准单向晶闸管芯片


(芯片代码: CP057)

○ 芯片特征:

双面台面结构(Double Mesa), 台面玻璃钝化工艺,


背面三层金属电极。


- 芯片尺寸: 4.5mm×4.5mm
- 主要用途:
- 可替换型号:
- 器件线路符号:

○ 芯片结构图:

JCT1031 芯片结构图 (单位: um)

○产品极限参数(封装成 TO-220 后,除非另有规定,T_{CASE} =25℃)

参数名称	符号	数值	单位
结温范围	Tj	-40~125	$^{\circ}$
断态重复峰值电压	V_{DRM}	1000/1200	V
反向重复峰值电压	V_{RRM}	1000/1200	V
通态均方根电流 T _C =80℃	I _{T (RMS)}	31	Α
通平均电流 T _C =80℃	I _{T (AV)}	20	Α
通态浪涌电流 tp=10mS	I _{TSM}	310	Α
I ² t 值 tp=10mS	l ² t	480	A ² S
通态电流临界上升率	dI/dt	100	A/uS
I_G =2 $\times I_{GT}$, tr \leq 100nS,			
Tj=125℃			
门极峰值电流 Tj=125℃	I _{GM}	4	Α
门极平均功率 Tj=125℃	P _G (AV)	1	W

○ 产品电性能 (封装成 TO-220 后,除非另有规定, T_{CASE} =25°)

特性和测试条件	符号	数值	单位
通态峰值电压	V_{TM}	≤1.7	V
I _T =45A, tp=380uS			
断态峰值电流 T _C =25℃	I _{DRM1}	≤100	uA
$V_D=V_{DRM}$ $T_C=125^{\circ}C$	I _{DRM2}	≤10	mA
反向峰值电流 T _C =25℃	I _{RRM1}	≤100	uA
$V_R = V_{RRM}$ $T_C = 125$ °C	I _{RRM2}	≤10	mA
门极触发电流	I _{GT}	15-60	mA
V_D =12V, R_L =30 Ω			
擎住电流 I _G =1.2 I _{GT}	IL	≤120	mA
维持电流 I _T =500mA	I _H	≤100	mA
门极触发电压	V_{GT}	≤1.5	V
V_D =12V, R_L =30 Ω			
门极不触发电压	V_{GD}	≥0.25	V
$V_D=V_{DRM},Tj=125^{\circ}C$,			
R _L =3.3KΩ			
断态电压临界上升率	dV/dt	≥1000	V/uS
V_D =2/3 V_{DRM} , Tj =125 $^{\circ}$ C,			
门极开路			