

flow1

Output Inverter Application

600V/30A

3phase SPWM

15 V V_{GEon} =

 V_{GEoff} -15 V R_{gon} 16 Ω =

 R_{goff} 16 Ω

Figure 1

Typical average static loss as a function of output current

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$

125 ${\mathfrak C}$

Mi*cosφ from -1 to 1 in steps of 0,2

Typical average static loss as a function of output current

 \mathbf{At} $T_j =$

125 ${\mathfrak C}$

IGBT Figure 3

 $P_{loss} = f(I_{out})$

Αt

 $T_j =$ 125 \mathcal{C}

DC link = 320 ٧

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2 Figure 4 Typical average switching loss

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$ 125 ${\mathfrak C}$

DC link = 320 ٧

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

flow1

Output Inverter Application

Phase

600V/30A

Αt

 ${\mathfrak C}$ $T_j =$ 125 DC link = V 320 kHz $f_{sw} =$

60 °C to 100 °C in steps of 5 °C T_h from

Αt

 $T_j =$ 125 C DC link = 320 ٧ 80

 \mathcal{C}

as a function of switching frequency $I_{out} = f(f_{sw})$

At

 $T_j =$ ${\mathbb C}$ 125 DC link = 320

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 125 \mathcal{C} DC link = 320

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

flow1

Output Inverter Application

600V/30A

Αt

 $T_j =$ 125 $^{\circ}$ DC link = 320 $^{\circ}$ V

DC link = 320 Mi = 1

 $\cos \phi = 0.80$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Figure 11 Inverte

Typical available overload factor as a function of

Αt

 $T_j =$ 125 $^{\circ}$ DC link = 320 $^{\circ}$ V

Mi = 1

 $\cos \phi = 0.8$

 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

At $T_j =$

125 ℃

DC link = 320 V

Mi = 1 cos φ = 0.80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2