

The following document contains information on Cypress products. Although the document is marked with the name "Spansion", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM ${ }^{T M}$ and SRAM, Traveo ${ }^{T M}$ microcontrollers, the industry's only PSoC ${ }^{\circledR}$ programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense ${ }^{\circledR}$ capacitive touch-sensing controllers, and Wireless BLE Bluetooth ${ }^{\circledR}$ Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

32-bit ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M3 based Microcontroller MB9BF524K/L/M, MB9BF522K/L/M, MB9BF521K/L/M

Data Sheet (Full Production)

Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

Notice On Data Sheet Designations

Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions.

Advance Information

The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content:
"This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice."

Preliminary

The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content:
"This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications."

Combination

Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page.

Full Production (No Designation on Document)

When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category:
"This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur."

Questions regarding these document designations may be directed to your local sales office.

32-bit ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M3 based Microcontroller MB9BF524K/L/M, MB9BF522K/L/M, MB9BF521K/L/M
 Data Sheet (Full Production)

- Description

The MB9B520M Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power consumption mode and competitive cost.

These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions such as various timers, ADCs, DACs and Communication Interfaces (USB, CAN, UART, CSIO, I² ${ }^{2}$, LIN).

The products which are described in this data sheet are placed into TYPE9 product categories in "FM3 Family PERIPHERAL MANUAL".

Note: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries

- Features

- 32-bit ARM Cortex-M3 Core
- Processor version: r2p1
- Up to 72 MHz Frequency Operation
- Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels
- 24-bit System timer (Sys Tick): System timer for OS task management

- On-chip Memories

[Flash memory]

- Dual operation Flash memory
- Dual Operation Flash memory has the upper bank and the lower bank. So, this series could implement erase, write and read operations for each bank simultaneously.
- Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank + 16 Kbytes lower bank)
- Work area: 32 Kbytes (lower bank)
- Read cycle: 0 wait-cycle
- Security function for code protection

[SRAM]

This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.

- SRAM0: Up to 16 Kbytes
- SRAM1: Up to 16 Kbytes
- USB Interface

The USB interface is composed of Function and Host.
PLL for USB is built-in, USB clock can be generated by multiplication of Main clock.
[USB function]

- USB2.0 Full-Speed supported
- Max 6 EndPoint supported
- EndPoint 0 is control transfer
- EndPoint 1, 2 can select Bulk-transfer, Interrupt-transfer or Isochronous-transfer
- EndPoint 3 to 5 can select Bulk-transfer or Interrupt-transfer
- EndPoint 1 to 5 are comprised of Double Buffers.
- The size of each endpoint is according to the follows.
- Endpoint 0, 2 to $5: 64$ bytes
- Endpoint 1:256 bytes
[USB host]
- USB2.0 Full/Low-speed supported
- Bulk-transfer, interrupt-transfer and Isochronous-transfer support
- USB Device connected/dis-connected automatic detection
- Automatic processing of the IN/OUT token handshake packet
- Max 256-byte packet-length supported
- Wake-up function supported
- CAN Interface
- Compatible with CAN Specification 2.0A/B
- Maximum transfer rate: 1 Mbps
- Built-in 32 message buffer
- Multi-function Serial Interface (Max eight channels)
- 4 channels with 16 steps $\times 9$-bit FIFO (ch.0/1/3/4), 4 channels without FIFO (ch.2/5/6/7)
- Operation mode is selectable from the followings for each channel.
- UART
- CSIO
- LIN
- $\mathrm{I}^{2} \mathrm{C}$

[UART]

- Full duplex double buffer
- Selection with or without parity supported
- Built-in dedicated baud rate generator
- External clock available as a serial clock
- Hardware Flow control: Automatically control the transmission/reception by CTS/RTS (only ch.4)
- Various error detection functions available (parity errors, framing errors, and overrun errors)
[CSIO]
- Full duplex double buffer
- Built-in dedicated baud rate generator
- Overrun error detection function available
[LIN]
- LIN protocol Rev.2.1 supported
- Full duplex double buffer
- Master/Slave mode supported
- LIN break field generation (can be changed to 13 to 16 -bit length)
- LIN break delimiter generation (can be changed to 1 to 4-bit length)
- Various error detection functions available (parity errors, framing errors, and overrun errors)
$\left[I^{2} \mathrm{C}\right]$
Standard mode (Max 100 kbps) / Fast mode (Max 400 kbps) supported

- DMA Controller (Eight channels)

The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process simultaneously.

- 8 independently configured and operated channels
- Transfer can be started by software or request from the built-in peripherals
- Transfer address area: 32-bit (4 Gbytes)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- Transfer data type: byte/half-word/word
- Transfer block count: 1 to 16
- Number of transfers: 1 to 65536

- A/D Converter (Max 26 channels)

[12-bit A/D Converter]

- Successive Approximation type
- Built-in 2units
- Conversion time: 0.8 us @ 5 V
- Priority conversion available (priority at 2 levels)
- Scanning conversion mode
- Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps)
- D/A Converter (Max two channels)
- R-2R type
- 10-bit resolution
- Base Timer (Max eight channels)

Operation mode is selectable from the followings for each channel.

- 16-bit PWM timer
- 16-bit PPG timer
- 16-/32-bit reload timer
- 16-/32-bit PWC timer
- General-Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to.

- Capable of pull-up control per pin
- Capable of reading pin level directly
- Built-in the port relocate function
- Up to 65 high-speed general-purpose I/O Ports@80pin Package
- Some ports are 5 V tolerant.

See "■List of Pin Functions" and "■I/O Circuit Type" to confirm the corresponding pins.

- Dual Timer (32-/16-bit Down Counter)

The Dual Timer consists of two programmable 32-/16-bit down counters.
Operation mode is selectable from the followings for each channel.

- Free-running
- Periodic (=Reload)
- One-shot
- Quadrature Position/Revolution Counter (QPRC) (Max two channels)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use as the up/down counter.

- The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- 16-bit position counter
- 16-bit revolution counter
- Two 16-bit compare registers
- Multi-function Timer

The Multi-function timer is composed of the following blocks.

- 16-bit free-run timer $\times 3$ ch./unit
- Input capture $\times 4 \mathrm{ch}$./unit
- Output compare $\times 6 \mathrm{ch}$./unit
- A/D activation compare $\times 2$ ch./unit
- Waveform generator $\times 3 \mathrm{ch}$./unit
- 16-bit PPG timer $\times 3$ ch./unit

The following function can be used to achieve the motor control.

- PWM signal output function
- DC chopper waveform output function
- Dead time function
- Input capture function
- A/D convertor activate function
- DTIF (Motor emergency stop) interrupt function
- Real-time clock (RTC)

The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.

- The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.
- Timer interrupt function after set time or each set time.
- Capable of rewriting the time with continuing the time count.
- Leap year automatic count is available.

- Watch Counter

The Watch counter is used for wake up from Sleep and Timer mode.
Interval timer: up to 64 s (Max) @ Sub Clock : 32.768 kHz

- External Interrupt Controller Unit
- Up to 23 external interrupt input pins @ 80 pin Package
- Include one non-maskable interrupt (NMI) input pin
- Watchdog Timer (Two channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.
This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.
The "Hardware" watchdog timer is clocked by the built-in Low-speed CR oscillator. Therefore, the "Hardware" watchdog is active in any low-power consumption modes except RTC, Stop, Deep Standby RTC, Deep Standby Stop modes.

- CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage.

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

- CCITT CRC16 Generator Polynomial: 0x1021
- IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7

- Clock and Reset

[Clocks]
Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).

- Main Clock:
- Sub Clock:
- Built-in High-speed CR Clock:
- Built-in Low-speed CR Clock:
- Main PLL Clock
[Resets]
- Reset requests from INITX pin
- Power-on reset
- Software reset
- Watchdog timers reset
- Low-voltage detection reset
- Clock Super Visor reset
- Clock Super Visor (CSV)

Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.

- If external clock failure (clock stop) is detected, reset is asserted.
- If external frequency anomaly is detected, interrupt or reset is asserted.
- Low-Voltage Detector (LVD)

This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset.

- LVD1: error reporting via interrupt
- LVD2: auto-reset operation
- Low-Power Consumption Mode

Six low-power consumption modes supported.

- Sleep
- Timer
- RTC
- Stop
- Deep Standby RTC (selectable between keeping the value of RAM and not)
- Deep Standby Stop (selectable between keeping the value of RAM and not)
- Debug

Serial Wire JTAG Debug Port (SWJ-DP)

- Unique ID

Unique value of the device (41 bits) is set.

- Power Supply

Wide range voltage: VCC $\quad=2.7 \mathrm{~V}$ to 5.5 V
USBVCC $=3.0 \mathrm{~V}$ to 3.6 V (when USB is used)
$=2.7 \mathrm{~V}$ to 5.5 V (when GPIO is used)

■ Product Lineup

- Memory size

Product name		MB9BF521K/L/M	MB9BF522K/L/M	MB9BF524K/L/M
On-chip Flash memory	Main area	64 Kbytes	128 Kbytes	256 Kbytes
	Work area	32 Kbytes	32 Kbytes	32 Kbytes
	SRAM0	8 Kbytes	8 Kbytes	16 Kbytes
	SRAM1	8 Kbytes	8 Kbytes	16 Kbytes
	Total	16 Kbytes	16 Kbytes	32 Kbytes

- Function

Product name				MB9BF521K MB9BF522K MB9BF524K	MB9BF521L MB9BF522L MB9BF524L	MB9BF521M MB9BF522M MB9BF524M		
Pin count				48	64	80/96		
CPU		Freq.			Cortex-M3			
			72 MHz					
Power supply voltage range					2.7 V to 5.5 V			
USB2.0 (Function/Host)					1ch. (Max)			
CAN					1ch. (Max)			
DMAC				8ch.				
Multi-function Serial Interface (UART/CSIO/LIN/ ${ }^{2}$ C)				4ch. (Max) ch.0/1/3: FIFO ch.5: No FIFO (In ch.1/5, only UART and LIN are available.)	$\begin{gathered} \text { 8ch. (Max) } \\ \text { ch.0/1/3/4 FIFO } \\ \text { ch.2/5/6/7: No FIFO } \\ \text { (In ch.1, only UART and LIN are available.) } \end{gathered}$			
Base Timer (PWC/Reload timer/PWM/PPG)				8ch. (Max)				
MF- Timer	A/D activation compare 2 ch.			1 unit				
	Input capture		4ch.*					
	Free-run timer		3ch.					
	Output compare		6ch.					
	Waveform generator		3 ch .					
	PPG		3ch.					
QPRC				1ch.	2ch. (Max)			
Dual Timer				1 unit				
Real-Time Clock				1 unit				
Watch Counter				1 unit				
CRC Accelerator				Yes				
Watchdog timer				1ch. (SW) + 1ch. (HW)				
External Interrupts				$\begin{gathered} 14 \text { pins }(\text { Max })+ \\ \text { NMI } \times 1 \end{gathered}$	$\begin{gathered} 19 \text { pins (Max) }+ \\ \text { NMI } \times 1 \end{gathered}$	$\begin{gathered} 23 \text { pins }(\operatorname{Max})+ \\ \text { NMI } \times 1 \\ \hline \end{gathered}$		
I/O ports				35 pins (Max)	50 pins (Max)	65 pins (Max)		
12-bit A/D converter				14ch. (2 units)	23ch. (2 units)	26ch. (2 units)		
10-bit D/A converter				2ch. (Max)				
CSV (Clock Super Visor)				Yes				
LVD (Low-Voltage Detector)				2ch.				
Built-in CR				High-speed		4 MHz		
		Low-speed		100 kHz				
Debug Function				SWJ-DP				
Unique ID				Yes				

*: The external input channel which can be used is shown as follws.

- ch. 0 to ch. 3 : MB9BF521M/F522M/F524M
- ch.0, ch.2, ch. 3 : MB9BF521K/F522K/F524K, MB9BF521L/F522L/F524L

Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use.
See "■ Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics" for accuracy of built-in CR.

■ Packages

Product name Package	MB9BF521K MB9BF522K MB9BF524K	MB9BF521L MB9BF522L MB9BF524L	MB9BF521M MB9BF522M MB9BF524M
LQFP: FPT-48P-M49 (0.5 mm pitch)	\bigcirc	-	-
QFN: LCC-48P-M73 (0.5 mm pitch)	\bigcirc	-	-
LQFP: FPT-64P-M38 (0.5 mm pitch)	-	\bigcirc	-
LQFP: FPT-64P-M39 (0.65 mm pitch)	-	\bigcirc	-
QFN: LCC-64P-M24 (0.5 mm pitch)	-	\bigcirc	-
LQFP: FPT-80P-M37 (0.5 mm pitch)	-	-	\bigcirc
LQFP: FPT-80P-M40 (0.65 mm pitch)	-	-	\bigcirc
BGA: BGA-96P-M07 (0.5 mm pitch)	-	-	O

O: Supported
Note: See "■Package Dimensions" for detailed information on each package.

- Pin Assignment

- FPT-80P-M37/M40

<Note>

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

- FPT-64P-M38/M39

<Note>

The number after the underscore (" $_$") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

- LCC-64P-M24

<Note>

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

- FPT-48P-M49

<Note>

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

- LCC-48P-M73

<Note>

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

- BGA-96P-M07

<Note>

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

■ List of Pin Functions

- List of pin numbers

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{aligned} & \hline \text { LQFP-48 } \\ & \text { QFN-48 } \end{aligned}$			
1	B1	1	1	VCC	-	
2	C1	2	2	P50	F	N
				INT00_0		
				AINO_2		
				SIN3_1		
				AN22		
3	C2	3	3	P51	F	N
				INT01_0		
				BIN0_2		
				$\begin{gathered} \hline \text { SOT3_1 } \\ (\text { SDA3_1) } \end{gathered}$		
				AN23		
4	B3	4	4	P52	F	N
				INT02_0		
				ZIN0_2		
				$\begin{aligned} & \hline \text { SCK3_1 } \\ & \text { (SCL3_1) } \end{aligned}$		
				AN24		
5	D1	-	-	P53	E	L
				SIN6_0		
				TIOA1_2		
				INT07_2		
6	D2	-	-	P54	E	L
				$\begin{gathered} \hline \text { SOT6_0 } \\ \text { (SDA6_0) } \end{gathered}$		
				TIOB1_2		
				INT18_1		
7	D3	-	-	P55	E	L
				SCK6_0		
				(SCL6_0)		
				ADTG_1		
				INT19_1		
8	E1	-	-	P56	E	L
				INT08_2		
9	E2	5	-	P30	F	N
				AIN0_0		
				TIOB0_1		
				INT03_2		
				AN25		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \hline \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \hline \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
10	E3	6	-	P31	F	N
				BIN0_0		
				TIOB1_1		
				$\begin{aligned} & \hline \text { SCK6_1 } \\ & \text { (SCL6_1) } \end{aligned}$		
				INT04_2		
				AN26		
11	G1	7	-	P32	E	L
				ZIN0_0		
				TIOB2_1		
				$\begin{gathered} \hline \text { SOT6_1 } \\ \text { (SDA6_1) } \end{gathered}$		
				INT05_2		
12	G2	8	-	P33	E	L
				INT04_0		
				TIOB3_1		
				SIN6_1		
				ADTG_6		
13	G3	9	5	P39	E	L
				DTTI0X_0		
				INT06_0		
				ADTG_2		
14	H1	10	6	P3A	G	L
				$\begin{gathered} \text { RTO00_0 } \\ \text { (PPG00_0) } \end{gathered}$		
				TIOA0_1		
				INT07_0		
				SUBOUT_2		
				RTCCO_2		
15	H2	11	7	P3B	G	K
				$\begin{gathered} \hline \text { RTO01_0 } \\ (\text { PPG00 } \end{gathered}$		
				TIOA1_1		
16	H3	12	8	P3C	G	L
				$\begin{gathered} \hline \text { RTO02_0 } \\ (\text { PPG02_0) } \end{gathered}$		
				TIOA2_1		
				INT18_2		
17	J1	13	9	P3D	G	K
				$\begin{gathered} \text { RTO03_0 } \\ \text { (PPG02_0) } \end{gathered}$		
				TIOA3_1		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
18	J2	14	10	P3E	G	L
				$\begin{gathered} \hline \text { RTO04_0 } \\ \text { (PPG04_0) } \end{gathered}$		
				TIOA4_1		
				INT19_2		
19	J4	15	11	P3F	G	K
				$\begin{gathered} \hline \text { RTO05_0 } \\ \text { (PPG04 } \end{gathered}$		
				TIOA5_1		
20	L1	16	12	VSS		
21	L5	-	-	P44	G	L
				TIOA4_0		
				INT10_0		
22	K5	-	-	P45	G	L
				TIOA5_0		
				INT11_0		
23	L2	17	13	C	-	
24	L4	-	-	VSS	-	
25	K1	18	14	VCC	-	
26	L3	19	15	P46	D	F
				X0A		
27	K3	20	16	P47	D	G
				X1A		
28	K4	21	17	INITX	B	C
29	J5	-	-	P48	E	L
				INT14_1		
				SIN3_2		
30	K6	22	18	P49	L	L
				TIOB0_0		
				INT20_1		
				DA0_0		
			-	$\begin{gathered} \hline \text { SOT3_2 } \\ (\text { SDA3_2) } \end{gathered}$		
				AIN0_1		
31	J6	23	19	P4A	L	L
				TIOB1_0		
				INT21_1		
				DA1_0		
			-	$\begin{gathered} \hline \text { SCK3_2 } \\ \text { (SCL3_2) } \end{gathered}$		
				BIN0_1		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
32	L7	24	+-	P4B	E	L
				TIOB2_0		
				INT22_1		
				IGTRG_0		
				ZIN0_1		
33	K7	25	-	P4C	I*	L
				TIOB3_0		
				SCK7_1		
				INT12_0		
				AIN1_2		
34	J7	26	-	P4D	I*	L
				TIOB4_0		
				$\begin{aligned} & \hline \text { SOT7_1 } \\ & \text { (SDA7_1) } \end{aligned}$		
				INT13_0		
				BIN1_2		
35	K8	27	-	P4E	I*	L
				TIOB5_0		
				INT06_2		
				SIN7_1		
				ZIN1_2		
36	K9	28	20	MD1	C	E
				PE0		
37	L8	29	21	MD0	K	D
38	L9	30	22	X0	A	A
				PE2		
39	L10	31	23	X1	A	B
				PE3		
40	L11	32	24	VSS		
41	K11	33	-	VCC		
42	J11	34	25	P10	F	M
				AN00		
43	J10	35	26	P11	F	N
				AN01		
				SIN1_1		
				INT02_1		
				RX1_2		
				FRCK0_2		
				WKUP1		
44	J8	36	27	P12	F	M
				AN02		
				$\begin{gathered} \hline \text { SOT1_1 } \\ (\text { SDA1_1) } \end{gathered}$		
				TX1_2		
				IC00_2		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
45	H10	37	28	AVSS		
46	H9	38	29	P14	F	N
				AN04		
				INT03_1		
				IC02_2		
				SIN0_1		
47	G10	39	30	P15	F	N
				AN05		
				IC03_2		
				$\begin{gathered} \text { SOT0_1 } \\ (\text { SDA0_1) } \end{gathered}$		
				INT14_0		
48	G9	-	-	P16	F	N
				AN06		
				$\begin{aligned} & \hline \text { SCK0_1 } \\ & \text { (SCL0_1) } \end{aligned}$		
				INT15_0		
49	F10	40	-	P17	F	N
				AN07		
				SIN2_2		
				INT04_1		
50	H11	41	31	AVCC	-	
51	F11	42	32	AVRH	-	
52	G11	43	33	AVRL	-	
53	F9	44	-	P18	F	M
				AN08		
				SOT2_2 $\begin{aligned} & \text { SU12_2 } \\ & \text { (SDA2 2) } \end{aligned}$		
54	E11	45	-	P19	F	M
				AN09		
				$\begin{gathered} \hline \text { SCK2_2 } \\ \text { (SCL2_2) } \end{gathered}$		
55	E10	-	-	P1A	F	N
				AN10		
				SIN4_1		
				INT05_1		
				IC00_1		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
56	E9	-	-	P1B	F	N
				AN11		
				$\begin{gathered} \hline \text { SOT4_1 } \\ \text { (SDA4_1) } \end{gathered}$		
				IC01_1		
				INT20_2		
57	D10	46	34	P23	F	M
				$\begin{gathered} \hline \text { SCK0_0 } \\ \text { (SCL0_0) } \end{gathered}$		
				TIOA7_1		
				AN12		
58	D9	47	35	P22	F	M
				$\begin{aligned} & \hline \text { SOT0_0 } \\ & \text { (SDA0_0) } \end{aligned}$		
				TIOB7_1		
				AN13		
		-	-	ZIN1_1		
59	C11	48	36	P21	F	N
				SIN0_0		
				INT06_1		
				WKUP2		
				BIN1_1		
				AN14		
60	C10	-	-	P20	E	N
				INT05_0		
				CROUT_0		
				AIN1_1		
61	A10	49	37	P00	E	J
				TRSTX		
62	B9	50	38	P01	E	J
				TCK		
				SWCLK		
63	B11	51	39	P02	E	J
				TDI		
64	A9	52	40	P03	E	J
				TMS		
				SWDIO		
65	B8	53	41	P04	E	J
				TDO		
				SWO		
66	A8	-	-	P07	E	L
				ADTG_0		
				INT23_1		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	LQFP-64 QFN-64	$\begin{gathered} \hline \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
67	C8	54	-	P0A	J*	N
				SIN4_0		
				INT00_2		
				AN15		
68	C7	55	-	P0B	J*	N
				$\begin{gathered} \hline \text { SOT4_0 } \\ \text { (SDA4_0) } \end{gathered}$		
				TIOB6_1		
				AN16		
				INT18_0		
69	B7	56	-	P0C	J*	N
				$\begin{aligned} & \text { SCK4_0 } \\ & \text { (SCL4_0) } \end{aligned}$		
				TIOA6_1		
				INT19_0		
				AN17		
70	B6	-	-	P0D	E	L
				RTS4_0		
				TIOA3_2		
				INT20_0		
71	C6	-	-	P0E	E	L
				CTS4_0		
				TIOB3_2		
				INT21_0		
72	A6	57	42	P0F	F	I
				NMIX		
				SUBOUT_0		
				CROUT_1		
				RTCCO_0		
				WKUP0		
				AN18		
73	B5	-	-	P63	E	L
				INT03_0		
74	C5	58	-	P62	F	M
				SCK5_0 (SCL5_0)		
				ADTG_3		
				AN19		
75	B4	59	43	P61	F	M
				$\begin{aligned} & \hline \text { SOT5_0 } \\ & \text { (SDA5_0) } \end{aligned}$		
				TIOB2_2		
				UHCONX		
				DTTIOX_2		
				AN20		

Pin No				Pin Name	I/O circuit type	Pin state type
LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$			
76	C4	60	44	P60	J*	N
				SIN5_0		
				TIOA2_2		
				INT15_1		
				WKUP3		
				IGTRG_1		
				AN21		
77	A4	61	45	USBVCC		
78	A3	62	46	P80	H	H
				UDM0		
				INT16_1		
79	A2	63	47	P81	H	H
				UDP0		
				INT17_1		
80	A1	64	48	VSS		
-	$\begin{gathered} \text { A5, A7, A11, } \\ \text { B2, B10, C3, } \\ \text { C9, F1, F2, } \\ \text { F3, J3, J9, K2, } \\ \text { K10, L6 } \end{gathered}$	-	-	VSS		

*: 5 V tolerant I/O

- List of pin functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$
ADC	ADTG_0	A/D converter external trigger input pin	66	A8	-	-
	ADTG_1		7	D3	-	-
	ADTG_2		13	G3	9	5
	ADTG_3		74	C5	58	-
	ADTG_6		12	G2	8	-
	AN00	A/D converter analog input pin. ANxx describes ADC ch.xx.	42	J11	34	25
	AN01		43	J10	35	26
	AN02		44	J8	36	27
	AN04		46	H9	38	29
	AN05		47	G10	39	30
	AN06		48	G9	-	-
	AN07		49	F10	40	-
	AN08		53	F9	44	-
	AN09		54	E11	45	-
	AN10		55	E10	-	-
	AN11		56	E9	-	-
	AN12		57	D10	46	34
	AN13		58	D9	47	35
	AN14		59	C11	48	36
	AN15		67	C8	54	-
	AN16		68	C7	55	-
	AN17		69	B7	56	-
	AN18		72	A6	57	42
	AN19		74	C5	58	-
	AN20		75	B4	59	43
	AN21		76	C4	60	44
	AN22		2	C1	2	2
	AN23		3	C2	3	3
	AN24		4	B3	4	4
	AN25		9	E2	5	-
	AN26		10	E3	6	-

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{aligned} & \text { LQFP-64 } \\ & \text { QFN-64 } \end{aligned}$	$\begin{aligned} & \text { LQFP-48 } \\ & \text { QFN-48 } \\ & \hline \end{aligned}$
$\begin{gathered} \text { Base Timer } \\ 0 \end{gathered}$	TIOA0_1	Base timer ch. 0 TIOA pin	14	H1	10	6
	TIOB0_0	Base timer ch. 0 TIOB pin	30	K6	22	18
	TIOB0_1		9	E2	5	-
Base Timer 1	TIOA1_1	Base timer ch. 1 TIOA pin	15	H2	11	7
	TIOA1_2		5	D1	-	-
	TIOB1_0	Base timer ch. 1 TIOB pin	31	J6	23	19
	TIOB1_1		10	E3	6	-
	TIOB1_2		6	D2	-	-
$\begin{gathered} \text { Base Timer } \\ 2 \end{gathered}$	TIOA2_1	Base timer ch. 2 TIOA pin	16	H3	12	8
	TIOA2_2		76	C4	60	44
	TIOB2_0	Base timer ch. 2 TIOB pin	32	L7	24	-
	TIOB2_1		11	G1	7	-
	TIOB2_2		75	B4	59	43
Base Timer 3	TIOA3_1	Base timer ch. 3 TIOA pin	17	J1	13	9
	TIOA3_2		70	B6	-	-
	TIOB3_0	Base timer ch. 3 TIOB pin	33	K7	25	-
	TIOB3_1		12	G2	8	-
	TIOB3_2		71	C6	-	-
$\begin{gathered} \hline \text { Base Timer } \\ 4 \end{gathered}$	TIOA4_0	Base timer ch. 4 TIOA pin	21	L5	-	-
	TIOA4_1		18	J2	14	10
	TIOB4_0	Base timer ch. 4 TIOB pin	34	J7	26	-
Base Timer 5	TIOA5_0	Base timer ch. 5 TIOA pin	22	K5	-	-
	TIOA5_1		19	J4	15	11
	TIOB5_0	Base timer ch. 5 TIOB pin	35	K8	27	-
$\begin{gathered} \text { Base Timer } \\ 6 \end{gathered}$	TIOA6_1	Base timer ch. 6 TIOA pin	69	B7	56	-
	TIOB6_1	Base timer ch. 6 TIOB pin	68	C7	55	-
Base Timer7	TIOA7_1	Base timer ch. 7 TIOA pin	57	D10	46	34
	TIOB7_1	Base timer ch. 7 TIOB pin	58	D9	47	35
Debugger	SWCLK	Serial wire debug interface clock input pin	62	B9	50	38
	SWDIO	Serial wire debug interface data input / output pin	64	A9	52	40
	SWO	Serial wire viewer output pin	65	B8	53	41
	TCK	J-TAG test clock input pin	62	B9	50	38
	TDI	J-TAG test data input pin	63	B11	51	39
	TDO	J-TAG debug data output pin	65	B8	53	41
	TMS	J-TAG test mode state input/output pin	64	A9	52	40
	TRSTX	J-TAG test reset input pin	61	A10	49	37

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{aligned} & \text { LQFP-48 } \\ & \text { QFN-48 } \end{aligned}$
External Interrupt	INT00_0	External interrupt request 00 input pin	2	C1	2	2
	INT00_2		67	C8	54	-
	INT01_0	External interrupt request 01 input pin	3	C2	3	3
	INT02_0	External interrupt request 02 input pin	4	B3	4	4
	INT02_1		43	J10	35	26
	INT03_0	External interrupt request 03 input pin	73	B5	-	-
	INT03_1		46	H9	38	29
	INT03_2		9	E2	5	-
	INT04_0	External interrupt request 04 input pin	12	G2	8	-
	INT04_1		49	F10	40	-
	INT04_2		10	E3	6	-
	INT05_0	External interrupt request 05 input pin	60	P20	-	-
	INT05_1		55	E10	-	-
	INT05_2		11	G1	7	-
	INT06_0	External interrupt request 06 input pin	13	G3	9	5
	INT06_1		59	C11	48	36
	INT06_2		35	K8	27	-
	INT07_0	External interrupt request 07 input pin	14	H1	10	6
	INT07_2		5	D1	-	-
	INT08_2	External interrupt request 08 input pin	8	E1	-	-
	INT10_0	External interrupt request 10 input pin	21	L5	-	-
	INT11_0	External interrupt request 11 input pin	22	K5	-	-
	INT12_0	External interrupt request 12 input pin	33	K7	25	-
	INT13_0	External interrupt request 13 input pin	34	J7	26	-
	INT14_0	External interrupt request 14 input pin	47	G10	39	30
	INT14_1		29	J5	-	-
	INT15_0	External interrupt request 15 input pin	48	G9	-	-
	INT15_1		76	C4	60	44
	INT16_1	External interrupt request 16 input pin	78	A3	62	46
	INT17_1	External interrupt request 17 input pin	79	A2	63	47
	INT18_0	External interrupt request 18 input pin	68	C7	55	-
	INT18_1		6	D2	-	-
	INT18_2		16	H3	12	8
	INT19_0	External interrupt request 19 input pin	59	C11	56	-
	INT19_1		7	D3	-	-
	INT19_2		18	J2	14	10

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	LQFP-64	$\begin{aligned} & \text { LQFP-48 } \\ & \text { QFN-48 } \\ & \hline \end{aligned}$
External Interrupt	INT20_0	External interrupt request 20 input pin	70	B6	-	-
	INT20_1		30	K6	22	18
	INT20_2		56	E9	-	-
	INT21_0	External interrupt request 21 input pin	71	C6	-	-
	INT21_1		31	J6	23	19
	INT22_1	External interrupt request 22 input pin	32	L7	24	-
	INT23_1	External interrupt request 23 input pin	66	A8	-	-
	NMIX	Non-Maskable Interrupt input pin	72	A6	57	42
GPIO	P00	General-purpose I/O port 0	61	A10	49	37
	P01		62	B9	50	38
	P02		63	B11	51	39
	P03		64	A9	52	40
	P04		65	B8	53	41
	P07		66	A8	-	-
	P0A		67	C8	54	-
	P0B		68	C7	55	-
	P0C		69	B7	56	-
	P0D		70	B6	-	-
	P0E		71	C6	-	-
	P0F		72	A6	57	42
	P10	General-purpose I/O port 1	42	J11	34	25
	P11		43	J10	35	26
	P12		44	J8	36	27
	P14		46	H9	38	29
	P15		47	G10	39	30
	P16		48	G9	-	-
	P17		49	F10	40	-
	P18		53	F9	44	-
	P19		54	E11	45	-
	P1A		55	E10	-	-
	P1B		56	E9	-	-
	P20	General-purpose I/O port 2	60	C10	-	-
	P21		59	C11	48	36
	P22		58	D9	47	35
	P23		57	D10	46	34

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	LQFP-64	$\begin{gathered} \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$
GPIO	P30	General-purpose I/O port 3	9	E2	5	-
	P31		10	E3	6	-
	P32		11	G1	7	-
	P33		12	G2	8	-
	P39		13	G3	9	5
	P3A		14	H1	10	6
	P3B		15	H2	11	7
	P3C		16	H3	12	8
	P3D		17	J1	13	9
	P3E		18	J2	14	10
	P3F		19	J4	15	11
	P44	General-purpose I/O port 4	21	L5	-	-
	P45		22	K5	-	-
	P46		26	L3	19	15
	P47		27	K3	20	16
	P48		29	J5	-	-
	P49		30	K6	22	18
	P4A		31	J6	23	19
	P4B		32	L7	24	-
	P4C		33	K7	25	-
	P4D		34	J7	26	-
	P4E		35	K8	27	-
	P50	General-purpose I/O port 5	2	C1	2	2
	P51		3	C2	3	3
	P52		4	B3	4	4
	P53		5	D1	-	-
	P54		6	D2	-	-
	P55		7	D3	-	-
	P56		8	E1	-	-
	P60	General-purpose I/O port 6	76	C4	60	44
	P61		75	B4	59	43
	P62		74	C5	58	-
	P63		73	B5	-	-
	P80	General-purpose I/O port 8	78	A3	62	46
	P81		79	A2	63	47
	PE0	General-purpose I/O port E	36	K9	28	20
	PE2		38	L9	30	22
	PE3		39	L10	31	23

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{aligned} & \hline \text { LQFP-48 } \\ & \text { QFN-48 } \\ & \hline \end{aligned}$
Multifunction Serial 0	SIN0_0	Multi-function serial interface ch. 0 input pin	59	C11	48	36
	SIN0_1		46	H9	38	29
	$\begin{gathered} \text { SOT0_0 } \\ \text { (SDA0_0) } \end{gathered}$	Multi-function serial interface ch. 0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	58	D9	47	35
	$\begin{aligned} & \text { SOT0_1 } \\ & (\text { SDA0_1) } \end{aligned}$		47	G10	39	30
	$\begin{aligned} & \text { SCK0_0 } \\ & \text { (SCL0_0) } \end{aligned}$	Multi-function serial interface ch. 0 clock I/O pin. This pin operates as SCK0 when it is used in a CSIO (operation mode 2) and as SCL0 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	57	D10	46	34
	$\begin{aligned} & \text { SCK0_1 } \\ & (\text { SCL0_1) } \end{aligned}$		48	G9	-	-
Multifunction Serial 1	SIN1_1	Multi-function serial interface ch. 1 input pin	43	J10	35	26
	$\begin{gathered} \text { SOT1_1 } \\ (\text { SDA1_1) } \end{gathered}$	Multi-function serial interface ch. 1 output pin. This pin operates as SOT1 when it is used in a UART/LIN (operation modes $0,1,3$).	44	J8	36	27
Multifunction Serial 2	SIN2_2	Multi-function serial interface ch. 2 input pin	49	F10	40	-
	$\begin{gathered} \text { SOT2_2 } \\ \text { (SDA2_2) } \end{gathered}$	Multi-function serial interface ch. 2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	53	F9	44	-
	$\begin{gathered} \text { SCK2_2 } \\ \text { (SCL2_2) } \end{gathered}$	Multi-function serial interface ch. 2 clock I/O pin. This pin operates as SCK2 when it is used in a CSIO (operation mode 2) and as SCL2 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	54	E11	45	-
Multifunction Serial 3	SIN3_1	Multi-function serial interface ch. 3 input pin	2	C1	2	2
	SIN3_2		29	J5	-	-
	$\begin{gathered} \text { SOT3_1 } \\ \text { (SDA3_1) } \end{gathered}$	Multi-function serial interface ch. 3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	3	C2	3	3
	$\begin{aligned} & \text { SOT3_2 } \\ & \text { (SDA3_2) } \end{aligned}$		30	K6	-	-
	$\begin{aligned} & \text { SCK3_1 } \\ & \text { (SCL3_1) } \end{aligned}$	Multi-function serial interface ch. 3 clock I/O pin. This pin operates as SCK3 when it is used in a CSIO (operation mode 2) and as SCL3 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	4	B3	4	4
	$\begin{gathered} \text { SCK3_2 } \\ \text { (SCL3_2) } \end{gathered}$		31	J6	-	-

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \hline \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{aligned} & \text { LQFP-48 } \\ & \text { QFN-48 } \end{aligned}$
Multifunction Serial 4	SIN4_0	Multi-function serial interface ch. 4 input pin	67	C8	54	-
	SIN4_1		55	E10	-	-
	$\begin{aligned} & \text { SOT4_0 } \\ & \text { (SDA4_0) } \end{aligned}$	Multi-function serial interface ch. 4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	68	C7	55	-
	$\begin{gathered} \text { SOT4_1 } \\ \text { (SDA4_1) } \end{gathered}$		56	E9	-	-
	$\begin{aligned} & \text { SCK4_0 } \\ & \text { (SCL4_0) } \end{aligned}$	Multi-function serial interface ch. 4 clock I/O pin. This pin operates as SCK4 when it is used in a CSIO (operation mode 2) and as SCL4 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	69	B7	56	-
	RTS4_0	Multi-function serial interface ch. 4 RTS output pin	70	B6	-	-
	CTS4_0	Multi-function serial interface ch. 4 CTS input pin	71	C6	-	-
Multifunction Serial 5	SIN5_0	Multi-function serial interface ch. 5 input pin	76	C4	60	44
	$\begin{aligned} & \text { SOT5_0 } \\ & \text { (SDA5_0) } \end{aligned}$	Multi-function serial interface ch. 5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	75	B4	59	43
	$\begin{aligned} & \text { SCK5_0 } \\ & \text { (SCL5_0) } \end{aligned}$	Multi-function serial interface ch. 5 clock I/O pin. This pin operates as SCK5 when it is used in a CSIO (operation mode 2) and as SCL5 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	74	C5	58	-
Multifunction Serial 6	SIN6_0	Multi-function serial interface ch. 6 input pin	5	D1	-	-
	SIN6_1		12	G2	8	-
	$\begin{aligned} & \text { SOT6_0 } \\ & \text { (SDA6_0) } \end{aligned}$	Multi-function serial interface ch. 6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	6	D2	-	-
	$\begin{aligned} & \text { SOT6_1 } \\ & \text { (SDA6_1) } \end{aligned}$		11	G1	7	-
	$\begin{aligned} & \text { SCK6_0 } \\ & \text { (SCL6_0) } \end{aligned}$	Multi-function serial interface ch. 6 clock I/O pin. This pin operates as SCK6 when it is used in a CSIO (operation mode 2) and as SCL6 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	7	D3	-	-
	$\begin{aligned} & \text { SCK6_1 } \\ & \text { (SCL6_1) } \end{aligned}$		10	E3	6	-

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{gathered} \hline \text { LQFP-48 } \\ \text { QFN-48 } \end{gathered}$
Multifunction Serial 7	SIN7_1	Multi-function serial interface ch. 7 input pin	35	K8	27	-
	$\begin{aligned} & \text { SOT7_1 } \\ & \text { (SDA7_1) } \end{aligned}$	Multi-function serial interface ch. 7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	34	J7	26	-
	$\begin{aligned} & \text { SCK7_1 } \\ & \text { (SCL7_1) } \end{aligned}$	Multi-function serial interface ch. 7 clock I/O pin. This pin operates as SCK7 when it is used in a CSIO (operation mode 2) and as SCL7 when it is used in an $\mathrm{I}^{2} \mathrm{C}$ (operation mode 4).	33	K7	25	-
Multifunction Timer 0	DTTI0X_0	Input signal of waveform generator to control outputs RTO00 to RTO05 of Multi-function timer 0.	13	G3	9	5
	DTTI0X_2		75	B4	59	43
	FRCK0_2	16-bit free-run timer ch. 0 external clock input pin	43	J10	35	26
	IC00_1	16-bit input capture input pin of Multi-function timer 0. ICxx describes channel number.	55	E10	-	-
	IC00_2		44	J8	36	27
	IC01_1		56	E9	-	-
	IC02_2		46	H9	38	29
	IC03_2		47	G10	39	30
	$\begin{aligned} & \text { RTO00_0 } \\ & \text { (PPG00_0) } \end{aligned}$	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	14	H1	10	6
	$\begin{aligned} & \text { RTO01_0 } \\ & \text { (PPG00_0) } \end{aligned}$	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	15	H2	11	7
	$\begin{aligned} & \text { RTO02_0 } \\ & \text { (PPG02_0) } \end{aligned}$	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	16	H3	12	8
	$\begin{aligned} & \text { RTO03_0 } \\ & \text { (PPG02_0) } \end{aligned}$	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	17	J1	13	9
	$\begin{aligned} & \text { RTO04_0 } \\ & \text { (PPG04_0) } \end{aligned}$	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	18	J2	14	10
	$\begin{aligned} & \text { RTO05_0 } \\ & \text { (PPG04_0) } \end{aligned}$	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	19	J4	15	11
	IGTRG_0	PPG IGBT mode external trigger input pin	32	L7	24	-
	IGTRG_1		76	C4	60	44

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \hline \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{aligned} & \text { LQFP-48 } \\ & \text { OFN-48 } \end{aligned}$
Quadrature Position/ Revolution Counter 0	AIN0_0	QPRC ch. 0 AIN input pin	9	E2	5	-
	AIN0_1		30	K6	22	-
	AIN0_2		2	C1	2	2
	BIN0_0	QPRC ch.0 BIN input pin	10	E3	6	-
	BIN0_1		31	J6	23	-
	BIN0_2		3	C2	3	3
	ZIN0_0	QPRC ch. 0 ZIN input pin	11	G1	7	-
	ZIN0_1		32	L7	24	-
	ZIN0_2		4	B3	4	4
Quadrature Position/ Revolution Counter 1	AIN1_1	QPRC ch. 1 AIN input pin	60	C10	-	-
	AIN1_2		33	K7	25	-
	BIN1_1	QPRC ch. 1 BIN input pin	59	C11	-	-
	BIN1_2		34	J7	26	-
	ZIN1_1	QPRC ch. 1 ZIN input pin	58	D9	-	-
	ZIN1_2		35	K8	27	-
USB	UDM0	USB function/host D - pin	78	A3	62	46
	UDP0	USB function/host D + pin	79	A2	63	47
	UHCONX	USB external pull-up control pin	75	B4	59	43
CAN	TX1_2	CAN interface TX output pin	44	J8	36	27
	RX1_2	CAN interface RX input pin	43	J10	35	26
Real-time clock	RTCCO_0	0.5 seconds pulse output pin of Real-time clock	72	A6	57	42
	RTCCO_2		14	H1	10	6
	SUBOUT_0	Sub clock output pin	72	A6	57	42
	SUBOUT_2		14	H1	10	6
Low-Power Consumption Mode	WKUP0	Deep standby mode return signal input pin 0	72	A6	57	42
	WKUP1	Deep standby mode return signal input pin 1	43	J10	35	26
	WKUP2	Deep standby mode return signal input pin 2	59	C11	48	36
	WKUP3	Deep standby mode return signal input pin 3	76	C4	60	44
DAC	DA0	D/A converter ch. 0 analog output pin	30	K6	22	18
	DA1	D/A converter ch. 1 analog output pin	31	J6	23	19
RESET	INITX	External Reset Input pin. A reset is valid when INITX="L".	28	K4	21	17

Pin function	Pin name	Function description	Pin No			
			LQFP-80	BGA-96	$\begin{gathered} \text { LQFP-64 } \\ \text { QFN-64 } \end{gathered}$	$\begin{aligned} & \text { LQFP-48 } \\ & \text { QFN-48 } \end{aligned}$
Mode	MD0	Mode 0 pin. During normal operation, MD0="L" must be input. During serial programming to Flash memory, MD0="H" must be input.	37	L8	29	21
	MD1	Mode 1 pin. During serial programming to Flash memory, MD1="L" must be input.	36	K9	28	20
POWER	VCC	Power supply Pin	1	B1	1	1
	VCC	Power supply Pin	25	K1	18	14
	VCC	Power supply Pin	41	K11	33	-
	USBVCC	3.3V Power supply port for USB I/O	77	A4	61	45
GND	VSS	GND Pin	-	F1	-	-
	VSS	GND Pin	-	F2	-	-
	VSS	GND Pin	-	F3	-	-
	VSS	GND Pin	-	B2	-	-
	VSS	GND Pin	20	L1	16	12
	VSS	GND Pin	-	K2	-	-
	VSS	GND Pin	-	J3	-	-
	VSS	GND Pin	-	L6	-	-
	VSS	GND Pin	24	L4	-	-
	VSS	GND Pin	40	L11	32	24
	VSS	GND Pin	-	K10	-	-
	VSS	GND Pin	-	J9	-	-
	VSS	GND Pin	-	B10	-	-
	VSS	GND Pin	-	C9	-	-
	VSS	GND Pin	-	D11	-	-
	VSS	GND Pin	-	A11	-	-
	VSS	GND Pin	-	A7	-	-
	VSS	GND Pin	-	C3	-	-
	VSS	GND Pin	-	A5	-	-
	VSS	GND Pin	80	A1	64	48
CLOCK	X0	Main clock (oscillation) input pin	38	L9	30	22
	X0A	Sub clock (oscillation) input pin	26	L3	19	15
	X1	Main clock (oscillation) I/O pin	39	L10	31	23
	X1A	Sub clock (oscillation) I/O pin	27	K3	20	16
	CROUT_0	Built-in high-speed CR-osc clock output port	60	C10	-	-
	CROUT_1		72	A6	57	42
Analog POWER	AVCC	A/D converter and D/A converter analog power supply pin	50	H11	41	31
	AVRH	A/D converter analog reference voltage input pin	51	F11	42	32
Analog GND	AVSS	A/D converter and D/A converter GND pin	45	H10	37	28
	AVRL	A/D converter analog reference voltage input pin	52	G11	43	33
C pin	C	Power supply stabilization capacity pin	23	L2	17	13

I/O Circuit Type

Type	Circuit	Remarks
A		It is possible to select the main oscillation / GPIO function When the main oscillation is selected. - Oscillation feedback resistor : Approximately $1 \mathrm{M} \Omega$ - With Standby mode control When the GPIO is selected. - CMOS level output. - CMOS level hysteresis input - With pull-up resistor control - With standby mode control - Pull-up resistor : Approximately $50 \mathrm{k} \Omega$ - $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$
B		- CMOS level hysteresis input - Pull-up resistor : Approximately $50 \mathrm{k} \Omega$

Type	Circuit	Remarks
C		- Open drain output - CMOS level hysteresis input
D		It is possible to select the sub oscillation / GPIO function When the sub oscillation is selected. - Oscillation feedback resistor : Approximately $5 \mathrm{M} \Omega$ - With Standby mode control When the GPIO is selected. - CMOS level output. - CMOS level hysteresis input - With pull-up resistor control - With standby mode control - Pull-up resistor : Approximately $50 \mathrm{k} \Omega$ - $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$

DataSheet

Type	Circuit	Remarks
G		- CMOS level output - CMOS level hysteresis input - With pull-up resistor control - With standby mode control - Pull-up resistor : Approximately $50 \mathrm{k} \Omega$ - $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ - +B input is available
H		It is possible to select the USB I/O / GPIO function. When the USB I/O is selected. - Full-speed, Low-speed control When the GPIO is selected. - CMOS level output - CMOS level hysteresis input - With standby mode control

Type	Circuit	Remarks
I		- CMOS level output - CMOS level hysteresis input - 5 V tolerant - With pull-up resistor control - With standby mode control - Pull-up resistor : Approximately $50 \mathrm{k} \Omega$ - $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ - Available to control PZR registers. - When this pin is used as an $\mathrm{I}^{2} \mathrm{C}$ pin, the digital output P-ch transistor is always off
J		- CMOS level output - CMOS level hysteresis input - With input control - Analog input - 5 V tolerant - With pull-up resistor control - With standby mode control - Pull-up resistor : Approximately $50 \mathrm{k} \Omega$ - $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ - Available to control PZR registers. - When this pin is used as an $I^{2} \mathrm{C}$ pin, the digital output P -ch transistor is always off
K		CMOS level hysteresis input

■ Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

- Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

- Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

- Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.
(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation.
Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

- Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
(2) Be sure that abnormal current flows do not occur during the power-on sequence.

- Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

- Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

- Precautions Related to Usage of Devices

Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative.

- Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

- Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Spansion Inc. recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions.

- Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with $\mathrm{Sn}-\mathrm{Ag}$-Cu balls are mounted using $\mathrm{Sn}-\mathrm{Pb}$ eutectic soldering, junction strength may be reduced under some conditions of use.

- Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
(3) When necessary, Spansion Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

- Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking.
Condition: $125^{\circ} \mathrm{C} / 24 \mathrm{~h}$

- Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of $1 \mathrm{M} \Omega$).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
(4) Ground all fixtures and instruments, or protect with anti-static measures.
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives.

Please check the latest handling precautions at the following URL.
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf

■ Handling Devices

- Power supply pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin, between AVRH pin and AVRL pin near this device.

- Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed $0.1 \mathrm{~V} / \mu \mathrm{s}$ when there is a momentary fluctuation on switching the power supply.

- Crystal oscillator circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the $\mathrm{X} 0 / \mathrm{X} 1$ and $\mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

- Sub crystal oscillator

This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.

- Surface mount type

Size : More than $3.2 \mathrm{~mm} \times 1.5 \mathrm{~mm}$
Load capacitance : Approximately 6 pF to 7 pF

- Lead type

Load capacitance : Approximately 6 pF to 7 pF

- Using an external clock

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to $\mathrm{X} 0 . \mathrm{X} 1$ (PE3) can be used as a general-purpose I/O port.
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X 0 A . $\mathrm{X} 1 \mathrm{~A}(\mathrm{P} 47)$ can be used as a general-purpose I/O port.

- Example of Using an External Clock

Device

- Handling when using Multi-function serial pin as $I^{2} C$ pin

If it is using the multi-function serial pin as $\mathrm{I}^{2} \mathrm{C}$ pins, P -ch transistor of digital output is always disabled. However, $I^{2} \mathrm{C}$ pins need to keep the electrical characteristic like other pins and not to connect to the external $I^{2} \mathrm{C}$ bus system with power OFF.

- C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor $\left(\mathrm{C}_{\mathrm{S}}\right)$ for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about $4.7 \mu \mathrm{~F}$ would be recommended for this series.

- Mode pins (MDO)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

- Notes on power-on

Turn power on/off in the following order or at the same time.
If not using the A/D converter and D/A converter, connect $\mathrm{AVCC}=\mathrm{VCC}$ and $\mathrm{AVSS}=\mathrm{VSS}$.

$$
\begin{aligned}
\text { Turning on }: & \mathrm{VCC}
\end{aligned} \rightarrow \mathrm{USBVCC},
$$

Turning off : USBVCC \rightarrow VCC

$$
\mathrm{AVRH} \rightarrow \mathrm{AVCC} \rightarrow \mathrm{VCC}
$$

- Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

- Differences in features among the products with different memory sizes and between Flash memory products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

- Pull-Up function of 5 V tolerant I / O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.

Block Diagram

■ Memory Size
See " • Memory size" in "■Product Lineup" to confirm the memory size.

- Memory Map
- Memory Map (1)

- Memory Map (2)

Refer to the programming manual for the detail of Flash main area.
-MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual

- Peripheral Address Map

Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF	AHB	Flash Memory I/F register
0x4000_1000	0x4000_FFFF		Reserved
0x4001_0000	0x4001_0FFF	APB0	Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog timer
0x4001_2000	0x4001_2FFF		Software Watchdog timer
0x4001_3000	0x4001_4FFF		Reserved
0x4001_5000	0x4001_5FFF		Dual-Timer
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF	APB1	Multi-function timer unit0
0x4002_1000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF		Quadrature Position/Revolution Counter (QPRC)
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_8FFF		D/A Converter
0x4002_9000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Built-in CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF	APB2	External Interrupt
0x4003_1000	0x4003_1FFF		Interrupt Source Check Resister
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		Reserved
0x4003_5000	0x4003_57FF		Low-Voltage Detector
0x4003_5800	0x4003_5FFF		Deep standby mode Controller
0x4003_6000	0x4003_6FFF		USB clock generator
0x4003_7000	0x4003_7FFF		CAN prescaler
0x4003_8000	0x4003_8FFF		Multi-function serial Interface
0x4003_9000	0x4003_9FFF		CRC
0x4003_A000	0x4003_AFFF		Watch Counter
0x4003_B000	0x4003_BFFF		Real-time clock
0x4003_C000	0x4003_FFFF		Reserved
0x4004_0000	0x4004_FFFF	AHB	USB ch. 0
0x4005_0000	0x4005_FFFF		Reserved
0x4006_0000	0x4006_0FFF		DMAC register
0x4006_1000	0x4006_2FFF		Reserved
0x4006_3000	0x4006_3FFF		CAN ch. 1
0x4006_4000	0x41FF_FFFF		Reserved

■ Pin Status in Each CPU State

The terms used for pin status have the following meanings.

- INITX=0

This is the period when the INITX pin is the "L" level.

- INITX=1

This is the period when the INITX pin is the "H" level.

- $\mathrm{SPL}=0$

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to " 0 ".

- $\mathrm{SPL}=1$

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to " 1 ".

- Input enabled

Indicates that the input function can be used.

- Internal input fixed at "0"

This is the status that the input function cannot be used. Internal input is fixed at "L".

- Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the $\mathrm{Hi}-\mathrm{Z}$ state.

- Setting disabled

Indicates that the setting is disabled.

- Maintain previous state

Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.

- Analog input is enabled

Indicates that the analog input is enabled.

- Trace output

Indicates that the trace function can be used.

- GPIO selected

In Deep standby mode, pins switch to the general-purpose I/O port.

- List of Pin Status

	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or SLEEP mode state		mode, de, or de state	Deep RTC mo standby	andby or Deep OP mode e	Return from Deep standby mode state
		Power supply unstable	Power supply stable		Power supply stable	Power supply stable		Power supply stable		Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INITX = 1		INITX = 1		INITX = 1
		-	-	-	-	SPL $=0$	SPL = 1	SPL = 0	SPL = 1	-
A	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	GPIO selected
	Main crystal oscillator input pin/ External main clock input selected	Input enabled	Input enabled	Input enabled	Input enabled					
B	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$
	External main clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	$\mathrm{Hi}-\mathrm{Z} /$ Internal input fixed at " 0 "	Maintain previous state	Hi-Z / Internal input fixed at "0"	Maintain previous state
	Main crystal oscillator output pin	Hi-Z / Internal input fixed at "0"/ or Input enable	Hi-Z / Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	Maintain previous state/When oscillation stops*1, Hi-Z/ Internal input fixed at "0"	$\begin{gathered} \text { Maintain } \\ \text { previous } \\ \text { state/When } \\ \text { oscillation } \\ \text { stops*1, } \\ \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" } \\ \hline \end{gathered}$	Maintain previous state/When oscillation stops*1, Hi-Z / Internal input fixed at "0"	Maintain previous state/When oscillation stops* ${ }^{1}$, Hi-Z / Internal input fixed \qquad	Maintain previous state/When oscillation stops* ${ }^{1}$, Hi-Z / Internal input fixed at "0"	Maintain previous state/When oscillation stops* ${ }^{1}$, Hi-Z / Internal input fixed at "0"
C	INITX input pin	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled						
D	Mode input pin	Input enabled								
	Mode input pin	Input enabled								
E	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Input enabled	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$	Hi-Z/ Input enabled	$\begin{aligned} & \text { GPIO } \\ & \text { selected } \end{aligned}$

	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or SLEEP mode state		mode, ode, or ode state	Deep RTC mod standby S st	andby or Deep OP mode e	Return from Deep standby mode state
		Power supply unstable	Power supply stable		Power supply stable	Power supply stable		Power supply stable		Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INITX = 1		INITX = 1		INITX = 1
		-	-	-	-	SPL = 0	SPL = 1	SPL = 0	SPL = 1	-
F	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$
	Sub crystal oscillator input pin / External sub clock input selected	Input enabled	Input enabled	Input enabled						
G	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$
	External sub clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	Maintain previous state	Hi-Z/ Internal input fixed at "0"	Maintain previous state
	Sub crystal oscillator output pin	Hi-Z / Internal input fixed at "0"/ or Input enable	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" } \end{gathered}$	Hi-Z / Internal input fixed at "0"	Maintain previous state	Maintain previous state/When oscillation stops*2, Hi-Z / Internal input fixed at "0"	Maintain previous state/When oscillation stops*2, Hi-Z / Internal input fixed at "0"	$\begin{array}{\|c} \text { Maintain } \\ \text { previous } \\ \text { state/When } \\ \text { oscillation } \\ \text { stops*2, } \\ \text { Hi-Z/ } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" } \end{array}$	Maintain previous state/When oscillation stops*2, Hi-Z/ Internal input fixed at "0"	Maintain previous state/When oscillation stops*2, Hi-Z/ Internal input fixed at "0"
H	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	GPIO selected Internal input fixed at "0"	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" } \end{gathered}$	GPIO selected
	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled			Hi-Z / Internal input fixed at "0"			
	USB I/O pin	Setting disabled	Setting disabled	Setting disabled		$\mathrm{Hi}-\mathrm{Z}$ at transmission/ Input enabled/ Internal input fixed at "0" at reception	$\mathrm{Hi}-\mathrm{Z}$ at trans- mission/ Input enabled/ Internal input fixed at "0" at reception	Hi-Z / Input enabled	Hi-Z / Input enabled	Hi-Z / Input enabled

	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or SLEEP mode state	$\begin{array}{r} \text { Time } \\ \text { RTC } \\ \text { STOP } \end{array}$	mode, ode, or ode state	Deep RTC mo standby	tandby or Deep TOP mode te	Return from Deep standby mode state
		Power supply unstable	Power supply stable		Power supply stable	Power supply stable		Power supply stable		Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INITX = 1		INITX = 1		INITX = 1
		-	-	-	-	SPL = 0	SPL = 1	SPL = 0	SPL = 1	-
I	Analog input selected	Hi-Z	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	Hi-Z/ Internal input fixed at "0" / Analog input enabled	Hi-Z / Internal input fixed at "0" / Analog input enabled	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	Hi-Z/ Internal input fixed at "0" / Analog input enabled	Hi-Z / Internal input fixed at "0" / Analog input disabled	Hi-Z / Internal input fixed at "0" / Analog input disabled	Hi-Z / Internal input fixed at "0" / Analog input disabled
	NMIX selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	$\begin{aligned} & \text { WKUP } \\ & \text { input } \\ & \text { enabled } \end{aligned}$	Hi-Z / WKUP input enabled	GPIO selected
	Resource other than above selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled			Hi-Z / Internal input fixed at "0"			
	GPIO selected									Maintain previous state
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	Maintain previous state					
J	GPIO selected	Setting disabled	Setting disabled	Setting disabled			Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	GPIO selected
K	Resource selected GPIO selected	Hi-Z	$\begin{gathered} \text { Hi-Z / } \\ \text { Input } \\ \text { enabled } \end{gathered}$	$\begin{aligned} & \text { Hi-Z/ } \\ & \text { Input } \\ & \text { enabled } \end{aligned}$	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	$\begin{gathered} \text { GPIO } \\ \text { selected } \end{gathered}$
	Analog output selected External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	\qquad Maintain previous state	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	GPIO selected
L	Resource other than above selected	Hi-Z	Hi-Z / Input enabled	$\begin{gathered} \text { Hi-Z / } \\ \text { Input } \\ \text { enabled } \end{gathered}$			Hi-Z / Internal input fixed at "0"			
M	Analog input selected	Hi-Z	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \\ \hline \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \\ \hline \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \\ \hline \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \\ \hline \end{gathered}$

	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or SLEEP mode state		mode, ode, or ode state	Deep RTC mod standby S	tandby or Deep TOP mode te	Return from Deep standby mode state
		Power supply unstable	Power supply stable		Power supply stable	Power supply stable		Power supply stable		Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INITX = 1		INITX = 1		INITX = 1
		-	-	-	-	SPL = 0	SPL = 1	SPL = 0	SPL = 1	-
	Resource other than above selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at "0"	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	$\begin{aligned} & \text { GPIO } \\ & \text { selected } \end{aligned}$
	GPIO selected									
N	Analog input selected	Hi-Z	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	Hi-Z / Internal input fixed at "0" / Analog input enabled	Hi-Z / Internal input fixed at "0" / Analog input enabled	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	Hi-Z / Internal input fixed at "0" / Analog input enabled	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$	$\begin{gathered} \text { Hi-Z / } \\ \text { Internal } \\ \text { input fixed } \\ \text { at "0" / } \\ \text { Analog } \\ \text { input } \\ \text { enabled } \end{gathered}$
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	GPIO selected Internal input fixed at "0"	Hi-Z / Internal input fixed at "0"	$\begin{aligned} & \text { GPIO } \\ & \text { selected } \end{aligned}$
	Resource other than above selected						Hi-Z / Internal input fixed at "0"			
	GPIO selected									

*1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode.
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.
*3: Maintain previous state at Timer mode. GPIO selected Internal input fixed at "0" at RTC mode, Stop mode.
*4: Maintain previous state at Timer mode. Hi-Z/Internal input fixed at "0" at RTC mode, Stop mode.

■ Electrical Characteristics

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage ${ }^{1,}$ * ${ }^{2}$	V_{CC}	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.5$	V	
Power supply voltage (for USB)****3	$\mathrm{USBV}_{\text {CC }}$	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.5$	V	
Analog power supply voltage*1,*4	$\mathrm{AV}_{\mathrm{CC}}$	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.5$	V	
Analog reference voltage ${ }^{* 1, *^{4}}$	AVRH	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.5$	V	
Input voltage* ${ }^{1}$	$\mathrm{V}_{\text {I }}$	$\mathrm{V}_{\text {SS }}-0.5$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+0.5 \\ & (\leq 6.5 \mathrm{~V}) \end{aligned}$	V	Except for USB pin
		$\mathrm{V}_{\text {SS }}-0.5$	$\begin{gathered} \text { USBV }_{\text {CC }}+0.5 \\ (\leq 6.5 \mathrm{~V}) \end{gathered}$	V	USB pin
		$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\text {SS }}+6.5$	V	5 V tolerant
Analog pin input voltage*1	$\mathrm{V}_{\text {IA }}$	$\mathrm{V}_{\text {SS }}-0.5$	$\begin{gathered} \mathrm{AV}_{\mathrm{CC}}+0.5 \\ (\leq 6.5 \mathrm{~V}) \\ \hline \end{gathered}$	V	
Output voltage* ${ }^{1}$	V_{O}	$\mathrm{V}_{\text {SS }}-0.5$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+0.5 \\ & (\leq 6.5 \mathrm{~V}) \\ & \hline \end{aligned}$	V	
Clamp maximum current	$\mathrm{I}_{\text {CLAMP }}$	-2	+2	mA	*8
Clamp total maximum current	$\Sigma\left[\mathrm{I}_{\text {CLAMP }}\right]$		+20	mA	*8
L level maximum output current*5	$\mathrm{I}_{\text {OL }}$	-	10	mA	4 mA type
			20	mA	12 mA type
			39	mA	The pin doubled as USB I/O
L level average output current**	$\mathrm{I}_{\text {OLAV }}$	-	4	mA	4 mA type
			12	mA	12 mA type
			16.5	mA	The pin doubled as USB I/O
L level total maximum output current	$\sum \mathrm{I}$ OL	-	100	mA	
L level total average output current*7	$\sum \mathrm{I}_{\text {OLAV }}$	-	50	mA	
H level maximum output current*5	I_{OH}	-	-10	mA	4 mA type
			-20	mA	12 mA type
			-39	mA	The pin doubled as USB I/O
H level average output current* ${ }^{6}$	$\mathrm{I}_{\text {OHAV }}$	-	-4	mA	4 mA type
			-12	mA	12 mA type
			-18	mA	The pin doubled as USB I/O
H level total maximum output current	$\sum \mathrm{I}_{\mathrm{OH}}$	-	-100	mA	
H level total average output current* ${ }^{7}$	$\sum \mathrm{I}_{\text {OHAV }}$	-	- 50	mA	
Power consumption	P_{D}	-	300	mW	
Storage temperature	$\mathrm{T}_{\text {STG }}$	- 55	+ 150	${ }^{\circ} \mathrm{C}$	

*1: These parameters are based on the condition that $\mathrm{V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}$.
*2: V_{CC} must not drop below $\mathrm{V}_{\mathrm{SS}}-0.5 \mathrm{~V}$.
*3: $\mathrm{USBV}_{\mathrm{CC}}$ must not drop below $\mathrm{V}_{\mathrm{SS}}-0.5 \mathrm{~V}$.
*4: Ensure that the voltage does not exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$, for example, when the power is turned on.
*5: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
*6: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period.
*7: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms .
*8:

- See "■List of Pin Functions" and "■I/O Circuit Type" about +B input available pin.
- Use within recommended operating conditions.
- Use at DC voltage (current) the +B input.
- The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the device drive current is low, such as in the low-power consumpsion modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
- Note that if $a+B$ signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- The following is a recommended circuit example (I/O equivalent circuit).

<WARNING>

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

Parameter	Symbol	Conditions	Value		Unit	Remarks
			Min	Max		
Power supply voltage	$\mathrm{V}_{\text {cc }}$	-	$2.7{ }^{\text {* }}$	5.5	V	
Power supply voltage (3 V power supply) for USB	$\mathrm{USBV}_{\text {cc }}$	-	3.0	$\begin{gathered} 3.6 \\ \left(\leq \mathrm{V}_{\mathrm{CC}}\right) \end{gathered}$	v	*1
			2.7	$\begin{gathered} 5.5 \\ \left(\leq \mathrm{V}_{\mathrm{CC}}\right) \end{gathered}$		*2
Analog power supply voltage	$\mathrm{AV}_{\text {cC }}$	-	2.7	5.5	V	$\mathrm{AV}_{\mathrm{CC}}=\mathrm{V}_{\text {CC }}$
Analog reference voltage	AVRH	-	2.7	$\mathrm{AV}_{\mathrm{CC}}$	V	
	AVRL		$\mathrm{AV}_{\text {SS }}$	$\mathrm{AV}_{\text {SS }}$	V	
Smoothing capacitor	C_{S}	-	1	10	$\mu \mathrm{F}$	For Regulator*3
Operating temperature	$\mathrm{T}_{\text {A }}$	-	-40	+ 105	${ }^{\circ} \mathrm{C}$	

*1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).
*2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80).
*3: See " • C Pin" in "■Handling Devices" for the connection of the smoothing capacitor.
*4: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or bulit-in Low-speed CR is possible to operate only.

<WARNING>

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

(1) Current Rating

Parameter	Symbol	Pin name	Conditions		Value		Unit		
					Remarks				
					Typ	Max			
Run mode current	I_{CC}	VCC	PLL Run mode	CPU : 72 MHz , Peripheral: 36 MHz		32.5	41	mA	*1, *5
				CPU:72 MHz, Peripheral clock stops NOP operation	18	23	mA	*1, *5	
			High-speed CR Run mode	$\mathrm{CPU} /$ Peripheral : $4 \mathrm{MHz}{ }^{*}{ }^{2}$	2.5	3.4	mA	*1	
			Sub Run mode	CPU/ Peripheral : 32 kHz	110	980	$\mu \mathrm{A}$	*1, *6	
			Low-speed CR Run mode	CPU/ Peripheral : 100 kHz	130	1030	$\mu \mathrm{A}$	*1	
Sleep mode current	$\mathrm{I}_{\mathrm{CCS}}$		PLL Sleep mode	Peripheral : 36 MHz	22	28	mA	*1, *5	
			High-speed CR Sleep mode	Peripheral : $4 \mathrm{MHz}{ }^{*}{ }^{2}$	1.6	2.6	mA	*1	
			Sub Sleep mode	Peripheral : 32 kHz	96	955	$\mu \mathrm{A}$	* $1, * 6$	
			Low-speed CR Sleep mode	Peripheral : 100 kHz	115	975	$\mu \mathrm{A}$	* 1	

*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
*4: $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
*5: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

		$=\mathrm{AV}$	$\mathrm{USBV}_{\text {CC }}=2$	$5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=\mathrm{AV}$	RL	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=$	$40^{\circ} \mathrm{C}$	+105 ${ }^{\circ}$)
Parameter		Pin		ditions			Unit	Remarks
Parameter	Symbol	name			Typ*2	Max*2	Unit	Remarks
			Main	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ When LVD is off	4.1	4.8	mA	*1, *4
Timer	$\mathrm{I}_{\text {CCT }}$		Timer mode	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off	-	5.4	mA	*1, *4
current			Sub	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When LVD is off	17	66	$\mu \mathrm{A}$	*1, *5
	$\mathrm{I}_{\text {CCT }}$		Timer mode	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off	-	835	$\mu \mathrm{A}$	*1, *5
RTC			RTC mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ When LVD is off	15	61	$\mu \mathrm{A}$	*1, *5
current	$\mathrm{I}_{\text {CCR }}$		RTC mode	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off	-	680	$\mu \mathrm{A}$	*1, *5
Stop				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When LVD is off	14	53	$\mu \mathrm{A}$	*1
current	$\mathrm{I}_{\text {CCH }}$		Stop mode	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off	-	600	$\mu \mathrm{A}$	*1
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ When LVD is off, When RAM is off	2.2	11	$\mu \mathrm{A}$	*1, *3, *5
		VCC	Deep Standby	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ When LVD is off, When RAM is on	6.2	23	$\mu \mathrm{A}$	*1, *3, *5
	$\mathrm{I}_{\text {CCRD }}$		RTC mode	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off, When RAM is off		155	$\mu \mathrm{A}$	*1, *3, *5
Deep Standby				$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off, When RAM is on	-	215	$\mu \mathrm{A}$	*1, *3, *5
mode current				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ When LVD is off, When RAM is off	1.6	9.6	$\mu \mathrm{A}$	*1, *3
			Deep Standby	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ When LVD is off, When RAM is on	5.6	22	$\mu \mathrm{A}$	*1, *3
	$\mathrm{I}_{\text {CCHD }}$		Stop mode	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off, When RAM is off		150	$\mu \mathrm{A}$	*1, *3
				$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C},$ When LVD is off, When RAM is on	-	210	$\mu \mathrm{A}$	*1, *3

*1: When all ports are fixed.
*2: $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
*3: RAM on/off setting is on-chip SRAM only.
*4: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)
*5: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

- Low-Voltage Detection Current

Parameter		Pin name					
	Symbol		Conditions	Value		Unit	Remarks
				Typ	Max		
Low-voltage detection circuit (LVD) power supply current	$\mathrm{I}_{\text {CCLVD }}$	VCC	At operation for reset $\mathrm{Vcc}=5.5 \mathrm{~V}$	0.13	0.3	$\mu \mathrm{A}$	At not detect
			At operation for interrupt $\mathrm{Vcc}=5.5 \mathrm{~V}$	0.13	0.3	$\mu \mathrm{A}$	At not detect

- Flash Memory Current

*: The current at which to write or erase Flash memory, " $\mathrm{I}_{\text {CCFLASH }}$ " is added to " I_{CC} ".
- A/D Converter Current

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=\mathrm{AV}_{\text {SS }}=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Typ	Max		
Power supply current	$\mathrm{I}_{\text {CCAD }}$	AVCC	At 1unit operation	0.69	0.90	mA	
			At stop	0.25	25.84	$\mu \mathrm{A}$	
Reference power supply current	$\mathrm{I}_{\text {CCaVrh }}$	AVRH	At 1 unit operation AVRH=5.5 V	1.1	1.97	mA	
			At stop	0.2	3.4	$\mu \mathrm{A}$	

- D/A Converter Current

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current* ${ }^{1}$	IDDA**	AVCC	At 1unit operation $\mathrm{AV}_{\mathrm{CC}}=3.3 \mathrm{~V}$	250	315	380	$\mu \mathrm{A}$	
			At 1unit operation $\mathrm{AV}_{\mathrm{CC}}=5.0 \mathrm{~V}$	380	475	580	$\mu \mathrm{A}$	
	IDSA		At stop	-	-	16	$\mu \mathrm{A}$	

*1: No-load
*2: Generates the max current by the CODE about 0x200
(2) Pin Characteristics

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
H level input voltage (hysteresis input)	$\mathrm{V}_{\text {IHS }}$	CMOS hysteresis input pin, MD0, MD1	-	$\mathrm{V}_{\mathrm{CC}} \times 0.8$	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
		$\begin{array}{\|c\|} \hline 5 \mathrm{~V} \text { tolerant } \\ \text { input pin } \\ \hline \end{array}$	-	$\mathrm{V}_{\mathrm{CC}} \times 0.8$	-	$\mathrm{V}_{\mathrm{SS}}+5.5$	V	
L level input voltage (hysteresis input)	$\mathrm{V}_{\text {ILS }}$	CMOS hysteresis input pin, MD0, MD1	-	$\mathrm{V}_{\text {SS }}-0.3$	-	$\mathrm{V}_{\mathrm{CC}} \times 0.2$	V	
		5 V tolerant input pin	-	$\mathrm{V}_{\text {SS }}-0.3$	-	$\mathrm{V}_{\mathrm{CC}} \times 0.2$	V	
H level output voltage	V_{OH}	4 mA type	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \hline \mathrm{~V}_{\mathrm{CC}}<4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-0.5$	-	$\mathrm{V}_{\text {CC }}$	V	
		12 mA type	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \hline \mathrm{~V}_{\mathrm{CC}}<4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ \hline \end{gathered}$	$\mathrm{V}_{\text {CC }}-0.5$	-	V_{CC}	V	
		The pin doubled as USB I/O	$\begin{gathered} \hline \mathrm{USBV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OH}}=-18.0 \mathrm{~mA} \\ \hline \mathrm{USBV}_{\mathrm{CC}}<4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OH}}=-12.0 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \text { USBV }_{\mathrm{CC}}- \\ 0.4 \end{gathered}$	-	$\mathrm{USBV}_{\text {CC }}$	V	
L level output voltage	$\mathrm{V}_{\text {OL }}$	4 mA type	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ \hline \mathrm{~V}_{\mathrm{CC}}<4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \\ \hline \end{gathered}$	$\mathrm{V}_{\text {SS }}$	-	0.4	V	
		12 mA type	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \hline \mathrm{~V}_{\mathrm{CC}}<4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {SS }}$	-	0.4	V	
		The pin doubled as USB I/O	$\begin{gathered} \mathrm{USBV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OL}}=16.5 \mathrm{~mA} \\ \hline \mathrm{USBV}_{\mathrm{CC}}<4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=10.5 \mathrm{~mA} \end{gathered}$	$\mathrm{V}_{\text {SS }}$	-	0.4	V	
Input leak current	$\mathrm{I}_{\text {IL }}$	-	-	- 5	-	+ 5	$\mu \mathrm{A}$	
Pull-up resistance value	$\mathrm{R}_{\text {PU }}$	Pull-up pin	$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	33	50	90	$\mathrm{k} \Omega$	
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$	-	-	180		
Input capacitance	$\mathrm{C}_{\text {IN }}$	Other than VCC, USBVCC, VSS, AVCC, AVSS, AVRH, AVRL	-	-	5	15	pF	

4. AC Characteristics

(1) Main Clock Input Characteristics

Parameter	Symbol	Pin name	Conditions	CC $=$	to 5	SS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ}$
				Value		Unit	Remarks
				Min	Max		
Input frequency	f_{CH}	$\begin{aligned} & \text { X0, } \\ & \text { X1 } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	4	48	MHz	When crystal oscillator is connected
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$	4	20		
			$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	4	48	MHz	When using external Clock
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$	4	20		
Input clock cycle	$\mathrm{t}_{\text {Cylh }}$		$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	20.83	250	ns	When using external Clock
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$	50	250		
Input clock pulse width	-		Pwh/tcylh, PwL/tcylh	45	55	\%	When using external Clock
Input clock rising time and falling time	$\begin{aligned} & \mathrm{t}_{\mathrm{CF},} \\ & \mathrm{t}_{\mathrm{CR}} \end{aligned}$		-	-	5	ns	When using external Clock
Internal operating clock frequency* ${ }^{*}$	f_{CM}	-	-	-	72	MHz	Master clock
	f_{CC}	-	-	-	72	MHz	Base clock (HCLK/FCLK)
	$\mathrm{f}_{\mathrm{CP} 0}$	-	-	-	40	MHz	APB0 bus clock* ${ }^{2}$
	$\mathrm{f}_{\mathrm{CP} 1}$	-	-	-	40	MHz	APB1 bus clock* ${ }^{2}$
	$\mathrm{f}_{\mathrm{CP} 2}$	-	-	-	40	MHz	APB2 bus clock* ${ }^{2}$
Internal operating clock cycle time ${ }^{* 1}$	$\mathrm{t}_{\text {CYCC }}$	-	-	13.8	-	ns	Base clock (HCLK/FCLK)
	$\mathrm{t}_{\text {CYCP0 }}$	-	-	25	-	ns	APB0 bus clock* ${ }^{2}$
	$\mathrm{t}_{\mathrm{CYCP1}}$	-	-	25	-	ns	APB1 bus clock* ${ }^{2}$
	$\mathrm{t}_{\mathrm{CYCP} 2}$	-	-	25	-	ns	APB2 bus clock* ${ }^{2}$

*1: For more information about each internal operating clock, see "Chapter:Clock" in "FM3 Family PERIPHERAL MANUAL".
*2: For about each APB bus which each peripheral is connected to, see "■Block Diagram" in this data sheet.

(2) Sub Clock Input Characteristics

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Input frequency	1/ t $\mathrm{t}_{\text {CYLL }}$	$\begin{aligned} & \text { X0A, } \\ & \text { X1A } \end{aligned}$	-	-	32.768	-	kHz	When crystal oscillator is connected
			-	32	-	100	kHz	When using external clock
Input clock cycle	$\mathrm{t}_{\text {CYLL }}$		-	10	-	31.25	$\mu \mathrm{s}$	When using external clock
Input clock pulse width	-		Pwh/tcyll, PwL/tcyll	45	-	55	\%	When using external clock

* : See "• Sub crystal oscillator" in "■Handling Devices" for the crystal oscillator used.

(3) Built-in CR Oscillation Characteristics
- Built-in High-speed CR

Parameter	Symbol	Conditions	$\mathrm{V}_{\mathrm{CC}}=$	7 V to	V, V	= $0 \mathrm{~V}, \mathrm{~T}$	A $=-40^{\circ} \mathrm{C}$ to $+105^{\circ}$
			Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	$\mathrm{f}_{\text {CRH }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3.92	4	4.08	MHz	When trimming* ${ }^{1}$
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3.9	4	4.1		
		$\begin{gathered} \hline \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+ \\ 105^{\circ} \mathrm{C} \end{gathered}$	3.88	4	4.12		
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \end{gathered}$	3.94	4	4.06		
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \end{gathered}$	3.92	4	4.08		
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \sim+ \\ 105^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \\ \hline \end{gathered}$	3.9	4	4.1		
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C} \\ \hline \end{gathered}$	2.8	4	5.2		When not trimming
Frequency stabilization time	$\mathrm{t}_{\text {CRWT }}$	-	-	-	30	$\mu \mathrm{s}$	* ${ }^{2}$

*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming.
*2: This is the time to stabilize the frequency of high-speed CR clock after setting trimming value.
This period is able to use high-speed CR clock as source clock.

- Built-in Low-speed CR

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Conditions	Value			Unit	Remarks	
Clock frequency	$\mathrm{f}_{\text {CRL }}$		-	Min	Typ	Max		

(4-1) Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL)

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
PLL oscillation stabilization wait time* ${ }^{1}$ (LOCK UP time)	$\mathrm{t}_{\text {LOCK }}$	100	-	-	$\mu \mathrm{s}$	
PLL input clock frequency	$\mathrm{f}_{\text {PLLI }}$	4	-	16	MHz	
PLL multiplication rate	-	5	-	37	multiplier	
PLL macro oscillation clock frequency	$\mathrm{f}_{\text {PLLO }}$	75	-	150	MHz	
Main PLL clock frequency* ${ }^{2}$	$\mathrm{f}_{\text {CLKPLL }}$	-	-	72	MHz	
USB clock frequency*3	$\mathrm{f}_{\text {CLKSPLL }}$	-	-	48	MHz	After the M frequency division

*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".
*3: For more information about USB clock, see "Chapter 2-2: USB Clock Generation" in "FM3 Family PERIPHERAL MANUAL Communication Macro Part".
(4-2) Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of Main PLL)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
PLL oscillation stabilization wait time* ${ }^{1}$ (LOCK UP time)	$\mathrm{t}_{\text {LOCK }}$	100	-	-	$\mu \mathrm{s}$	
PLL input clock frequency	$\mathrm{f}_{\text {PLLI }}$	3.8	4	4.2	MHz	
PLL multiplication rate	-	19	-	35	multiplier	
PLL macro oscillation clock frequency	$\mathrm{f}_{\text {PLLO }}$	72	-	150	MHz	
Main PLL clock frequency*2	$\mathrm{f}_{\text {CLKPLL }}$	-	-	72	MHz	

*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".
Note: Make sure to input to the Main PLL source clock, the high-speed CR clock (CLKHC) that the frequency/temperature has been trimmed.
When setting PLL multiple rate, please take the accuracy of the built-in high-speed CR clock into account and prevent the master clock from exceeding the maximum frequency.

Main PLL connection

USB PLL connection

(5) Reset Input Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Reset input time	$\mathrm{t}_{\text {INITX }}$	INITX	-	500	-	ns	

(6) Power-on Reset Timing

Parameter	Symbol	Pinname	Value		Unit	Remarks
			Min	Max		
Power supply rising time	$\mathrm{t}_{\mathrm{VCCR}}$	VCC-	0	-	ms	
Power supply shut down time	$\mathrm{t}_{\text {OFF }}$		1	-	ms	
Time until releasing Power-on reset	$\mathrm{t}_{\text {PRT }}$		1.34	18.6	ms	

Glossary

- VCC_minimum : Minimum V_{CC} of recommended operating conditions
- VDH_minimum : Minimum detection voltage (when SVHR=00000) of Low-Voltage detection reset

See "8. Low-Voltage Detection Characteristics"
(7) Base Timer Input Timing

- Timer input timing

Parameter	Symbol	Pin name	$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$				
			S	Value		Unit	Remarks
				Min	Max		
Input pulse width	$\begin{gathered} \mathrm{t}_{\text {TIWH }}, \\ \mathrm{t}_{\text {TIWL }} \end{gathered}$	TIOAn/TIOBn (when using as ECK, TIN)	-	$2 t_{\text {CYCP }}$	-	ns	

TIN

- Trigger input timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	$\mathrm{t}_{\text {TRGH }}$, $t_{\text {TRGL }}$	TIOAn/TIOBn (when using as TGIN)	-	$2 t_{\text {CYCP }}$	-	ns	

Note: $t_{\text {CYCP }}$ indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see "■Block Diagram" in this data sheet.
(8) CSIO/UART Timing

- $\operatorname{CSIO}(\mathrm{SPI}=0, \mathrm{SCINV}=0)$

Parameter	Symbol							
		Pin name	Conditions	$\mathrm{V}_{\mathrm{Cc}}<4.5 \mathrm{~V}$		$\mathrm{V}_{c c} \geq 4.5 \mathrm{~V}$		Unit
				Min	Max	Min	Max	
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCKx	Master mode	$4 \mathrm{t}_{\text {CYCP }}$	-	$4 \mathrm{t}_{\text {CYCP }}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {SLOVI }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SOTx } \\ & \hline \end{aligned}$		- 30	+ 30	- 20	+ 20	ns
SIN \rightarrow SCK \uparrow setup time	$\mathrm{t}_{\text {IVSHI }}$	$\begin{gathered} \hline \text { SCKx, } \\ \text { SINx } \end{gathered}$		50	-	30	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SHIXI }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SINx } \\ & \hline \end{aligned}$		0	-	0	-	ns
Serial clock L pulse width	$\mathrm{t}_{\text {SLSH }}$	SCKx	Slave mode	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	ns
Serial clock H pulse width	$\mathrm{t}_{\text {SHSL }}$	SCKx		$\begin{gathered} \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {sLove }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		-	50	-	30	ns
$\mathrm{SIN} \rightarrow \mathrm{SCK} \uparrow$ setup time	$\mathrm{t}_{\text {IVSHE }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SINx } \end{aligned}$		10	-	10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SHIXE }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SINx } \end{aligned}$		20	-	20	-	ns
SCK falling time	t_{F}	SCKx		-	5	-	5	ns
SCK rising time	t_{R}	SCKx		-	5	-	5	ns

Notes: - The above characteristics apply to CLK synchronous mode.

- $t_{\text {CYCP }}$ indicates the APB bus clock cycle time.

About the APB bus number which Multi-function serial is connected to, see "■Block Diagram" in this data sheet.

- These characteristics only guarantee the same relocate port number.

For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.

- When the external load capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

$$
\text { - } \operatorname{CSIO}(\mathrm{SPI}=0, \mathrm{SCINV}=1)
$$

Parameter	Symbol	Pin name	Conditions	$\mathrm{V}_{\mathrm{cc}}<4.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$		Unit
				Min	Max	Min	Max	
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCKx	Master mode	$4 \mathrm{t}_{\mathrm{CYCP}}$	-	$4 \mathrm{t}_{\mathrm{CYCP}}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {Shovi }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		- 30	+ 30	-20	+ 20	ns
$\mathrm{SIN} \rightarrow$ SCK \downarrow setup time	$\mathrm{t}_{\text {IVSLI }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SINx } \end{aligned}$		50	-	30	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SLIXI }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SINx } \end{aligned}$		0	-	0	-	ns
Serial clock L pulse width	$\mathrm{t}_{\text {SLSH }}$	SCKx	Slave mode	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	ns
Serial clock H pulse width	$\mathrm{t}_{\text {SHSL }}$	SCKx		$\begin{gathered} \hline \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {Shove }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		-	50	-	30	ns
SIN \rightarrow SCK \downarrow setup time	$\mathrm{t}_{\text {IVSLE }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SINx } \end{aligned}$		10	-	10	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SLIXE }}$	$\begin{gathered} \hline \text { SCKx }, \\ \text { SINx } \end{gathered}$		20	-	20	-	ns
SCK falling time	t_{F}	SCKx		-	5	-	5	ns
SCK rising time	t_{R}	SCKx		-	5	-	5	ns

Notes: • The above characteristics apply to CLK synchronous mode.

- $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB bus clock cycle time.

About the APB bus number which Multi-function serial is connected to, see "■Block Diagram" in this data sheet.

- These characteristics only guarantee the same relocate port number.

For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.

- When the external load capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

$$
\text { - } \operatorname{CSIO}(\mathrm{SPI}=1, \mathrm{SCINV}=0)
$$

Parameter	Symbol	Pin name	Conditions	$\mathrm{V}_{\mathrm{Cc}}<4.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$		Unit
				Min	Max	Min	Max	Unit
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCKx	Master mode	$4 \mathrm{t}_{\mathrm{CYCP}}$	-	$4 \mathrm{t}_{\mathrm{CYCP}}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {Shovi }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		-30	$+30$	-20	+ 20	ns
SIN \rightarrow SCK \downarrow setup time	$\mathrm{t}_{\text {IVSLI }}$	$\begin{array}{\|l} \hline \text { SCKx, } \\ \text { SINx } \end{array}$		50	-	30	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SLIXI }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SINx } \end{aligned}$		0	-	0	-	ns
SOT \rightarrow SCK \downarrow delay time	$\mathrm{t}_{\text {SovLi }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 30 \end{gathered}$	-	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 30 \end{gathered}$	-	ns
Serial clock L pulse width	$\mathrm{t}_{\text {SLSH }}$	SCKx	Slave mode	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	ns
Serial clock H pulse width	$\mathrm{t}_{\text {SHSL }}$	SCKx		$\begin{gathered} \hline \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	$\mathrm{t}_{\mathrm{CYCP}}+$ 10	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {Shove }}$	$\begin{array}{\|l} \hline \text { SCKx, } \\ \text { SOTx } \end{array}$		-	50	-	30	ns
SIN \rightarrow SCK \downarrow setup time	$\mathrm{t}_{\text {IVSLE }}$	$\begin{array}{\|l} \hline \text { SCKx, } \\ \text { SINx } \\ \hline \end{array}$		10	-	10	-	ns
SCK $\downarrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {Slixe }}$	$\begin{array}{\|l} \hline \text { SCKx, } \\ \text { SINx } \\ \hline \end{array}$		20	-	20	-	ns
SCK falling time	t_{F}	SCKx		-	5	-	5	ns
SCK rising time	t_{R}	SCKx		-	5	-	5	ns

Notes: - The above characteristics apply to CLK synchronous mode.

- $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB bus clock cycle time.

About the APB bus number which Multi-function serial is connected to, see "■Block Diagram" in this data sheet.

- These characteristics only guarantee the same relocate port number.

For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.

- When the external load capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

$$
\text { - } \operatorname{CSIO}(\mathrm{SPI}=1, \mathrm{SCINV}=1)
$$

Parameter	Symbol	$\begin{array}{\|c} \hline \text { Pin } \\ \text { name } \end{array}$	Conditions	$\mathrm{V}_{\mathrm{Cc}}<4.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$		
				Min	Max	Min	Max	
Serial clock cycle time	$\mathrm{t}_{\text {SCYC }}$	SCKx	Master mode	$4 \mathrm{t}_{\mathrm{CYCP}}$	-	$4 \mathrm{t}_{\text {CYCP }}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {SLovi }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		-30	+ 30	-20	+ 20	ns
SIN \rightarrow SCK \uparrow setup time	$\mathrm{t}_{\text {IVSHI }}$	$\begin{gathered} \hline \text { SCKx, } \\ \text { SINx } \\ \hline \end{gathered}$		50	-	30	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SHIXI }}$	$\begin{gathered} \hline \text { SCKx, } \\ \text { SINx } \end{gathered}$		0	-	0	-	ns
SOT \rightarrow SCK \uparrow delay time	$\mathrm{t}_{\text {SOVHI }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SOTx } \\ & \hline \end{aligned}$		$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 30 \end{gathered}$	-	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 30 \end{gathered}$	-	ns
Serial clock L pulse width	$\mathrm{t}_{\text {SLSH }}$	SCKx	Slave mode	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	$\begin{gathered} 2 \mathrm{t}_{\mathrm{CYCP}}- \\ 10 \end{gathered}$	-	ns
Serial clock H pulse width	$\mathrm{t}_{\text {SHSL }}$	SCKx		$\begin{gathered} \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} \mathrm{t}_{\mathrm{CYCP}}+ \\ 10 \\ \hline \end{gathered}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	$\mathrm{t}_{\text {SLove }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SOTx } \end{aligned}$		-	50	-	30	ns
$\mathrm{SIN} \rightarrow$ SCK \uparrow setup time	$\mathrm{t}_{\text {IVSHE }}$	$\begin{aligned} & \hline \text { SCKx, } \\ & \text { SINx } \end{aligned}$		10	-	10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	$\mathrm{t}_{\text {SHIXE }}$	$\begin{aligned} & \text { SCKx, } \\ & \text { SINx } \end{aligned}$		20	-	20	-	ns
SCK falling time	t_{F}	SCKx		-	5	-	5	ns
SCK rising time	t_{R}	SCKx		-	5	-	5	ns

Notes: - The above characteristics apply to CLK synchronous mode.

- $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB bus clock cycle time.

About the APB bus number which Multi-function serial is connected to, see "■Block Diagram" in this data sheet.

- These characteristics only guarantee the same relocate port number.

For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.

- When the external load capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

- UART external clock input (EXT = 1)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Conditions	Min	Max	Unit	Remarks
Serial clock L pulse width	$\mathrm{t}_{\text {SLSH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	$\mathrm{t}_{\mathrm{CYCP}}+10$	-	ns	
Serial clock H pulse width	$\mathrm{t}_{\text {SHSL }}$		$\mathrm{t}_{\text {CYCP }}+10$	-	ns	
SCK falling time	t_{F}		-	5	ns	
SCK rising time	t_{R}		-	5	ns	

[^0](9) External Input Timing

Parameter			$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$				
	Symbol	Pin name	Conditions	Value		Unit	Remarks
			Conditions	Min	Max		Remarks
Input pulse width	$\mathrm{t}_{\mathrm{INH}}$, $\mathrm{t}_{\mathrm{INL}}$	ADTG	-	$2 \mathrm{t}_{\mathrm{CYCP}}{ }^{1}$	-	ns	A/D converter trigger input
		FRCKx					Free-run timer input clock
		ICxx					Input capture
		DTTIxX	-	$2 \mathrm{t}_{\mathrm{CYCP}}{ }^{*}$	-	ns	Waveform generator
		INTxx,	*2	$2 \mathrm{t}_{\text {CYCP }}+100{ }^{1}$	-	ns	External interrupt
		NMIX	*3	500	-	ns	NMI
		WKUPx	*4	500	-	ns	Deep standby wake up

*1: $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB bus clock cycle time.
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "■Block Diagram" in this data sheet.
*2: When in Run mode, in Sleep mode.
*3: When in Stop mode, in RTL mode, in Timer mode.
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.

(10) Quadrature Position/Revolution Counter timing

$$
\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	Value		Unit
			Min	Max	
AIN pin H width	$\mathrm{t}_{\text {AHL }}$	-	$2 \mathrm{t}_{\mathrm{CYCP}}{ }^{*}$	-	ns
AIN pin L width	$\mathrm{t}_{\text {ALL }}$	-			
BIN pin H width	$\mathrm{t}_{\text {BHL }}$	-			
BIN pin L width	$\mathrm{t}_{\text {BLL }}$	-			
BIN rising time from AIN pin H level	$\mathrm{t}_{\text {Aubu }}$	PC Mode2 or PC_Mode3			
AIN falling time from BIN pin H level	$\mathrm{t}_{\text {Buad }}$	PC_Mode2 or PC_Mode3			
BIN falling time from AIN pin L level	$\mathrm{t}_{\text {ADBD }}$	PC_Mode2 or PC_Mode3			
AIN rising time from BIN pin L level	$\mathrm{t}_{\text {bdau }}$	PC_Mode2 or PC_Mode3			
AIN rising time from BIN pin H level	$\mathrm{t}_{\text {buau }}$	PC_Mode2 or PC_Mode3			
BIN falling time from AIN pin H level	$\mathrm{t}_{\text {Aubd }}$	PC_Mode2 or PC_Mode3			
AIN falling time from BIN pin L level	$\mathrm{t}_{\text {BDAD }}$	PC_Mode2 or PC_Mode3			
BIN rising time from AIN pin L level	$\mathrm{t}_{\text {ADBU }}$	PC_Mode2 or PC_Mode3			
ZIN pin H width	$\mathrm{t}_{\text {ZHL }}$	QCR:CGSC=0			
ZIN pin L width	$\mathrm{t}_{\text {ZLL }}$	QCR:CGSC=0			
AIN/BIN rising and falling time from determined ZIN level	$\mathrm{t}_{\text {ZABE }}$	QCR:CGSC=1			
Determined ZIN level from AIN/BIN rising and falling time	$\mathrm{t}_{\text {ABEZ }}$	QCR:CGSC=1			

*: $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB bus clock cycle time.
About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see "■Block Diagram" in this data sheet.

ZIN

(11) $I^{2} C$ Timing

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Conditions	Standardmode		Fast-		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	$\mathrm{f}_{\text {SCL }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{R}=\left(\mathrm{V}_{\mathrm{P}} / \mathrm{I}_{\mathrm{OL}}\right)^{* 1} \end{gathered}$	0	100	0	400	kHz	
(Repeated) START condition hold time $\text { SDA } \downarrow \rightarrow \text { SCL } \downarrow$	$\mathrm{t}_{\text {HDSTA }}$		4.0	-	0.6	-	$\mu \mathrm{s}$	
SCL clock L width	$\mathrm{t}_{\text {Low }}$		4.7	-	1.3	-	$\mu \mathrm{s}$	
SCL clock H width	$\mathrm{t}_{\mathrm{HIGH}}$		4.0	-	0.6	-	$\mu \mathrm{s}$	
(Repeated) START condition setup time $\mathrm{SCL} \uparrow \rightarrow \mathrm{SDA} \downarrow$	$\mathrm{t}_{\text {SUSTA }}$		4.7	-	0.6	-	$\mu \mathrm{s}$	
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	$\mathrm{t}_{\text {HDDAT }}$		0	$3.45 *^{2}$	0	$0.9 *^{3}$	$\mu \mathrm{s}$	
Data setup time $\operatorname{SDA} \downarrow \uparrow \rightarrow \mathrm{SCL} \uparrow$	$\mathrm{t}_{\text {SUDAT }}$		250	-	100	-	ns	
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	$\mathrm{t}_{\text {Susto }}$		4.0	-	0.6	-	$\mu \mathrm{s}$	
Bus free time between STOP condition and START condition	$\mathrm{t}_{\text {BUF }}$		4.7	-	1.3	-	$\mu \mathrm{s}$	
Noise filter	$\mathrm{t}_{\text {SP }}$		$2 \mathrm{t}_{\mathrm{CYCP}}{ }^{*}$	-	$2 \mathrm{t}_{\mathrm{CYCP}}{ }^{* 4}$	-	ns	

*1:R and C_{L} represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.
V_{P} indicates the power supply voltage of the pull-up resistor and I_{OL} indicates V_{OL} guaranteed current.
*2:The maximum $\mathrm{t}_{\text {HDDAT }}$ must satisfy that it does not extend at least L period ($\mathrm{t}_{\text {LOw }}$) of device's SCL signal.
*3:A Fast mode $\mathrm{I}^{2} \mathrm{C}$ bus device can be used on a Standard mode $\mathrm{I}^{2} \mathrm{C}$ bus system as long as the device satisfies the requirement of " $\mathrm{t}_{\text {SUDAT }} \geq 250 \mathrm{~ns}$ ".
*4: $\mathrm{t}_{\mathrm{CYCP}}$ is the APB bus clock cycle time.
About the APB bus number that $\mathrm{I}^{2} \mathrm{C}$ is connected to, see " \quad Block Diagram" in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more
To use Fast-mode, set the APB bus clock at 8 MHz or more.

(12) JTAG Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
TMS, TDI setup time	$\mathrm{t}_{\text {JTAGS }}$	TCK, TMS, TDI	$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	15	-	ns	
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$				
TMS, TDI hold time	$\mathrm{t}_{\text {tTAGH }}$	$\begin{gathered} \text { TCK, } \\ \text { TMS, TDI } \end{gathered}$	$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	15	-	ns	
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$				
TDO delay time	$\mathrm{t}_{\text {TTAGD }}$	$\begin{aligned} & \text { TCK, } \\ & \text { TDO } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$	-	25	ns	
			$\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$	-	45		

Note: When the external load capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

5. 12-bit A/D Converter

- Electrical characteristics for the A/D converter

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	-	± 1.5	± 4.5	LSB	
Differential Nonlinearity	-	-	-	± 1.7	± 2.5	LSB	
Zero transition voltage	V_{ZT}	ANxx	-	± 10	± 15	mV	$\text { to } 5.5 \mathrm{~V}$
Full-scale transition voltage	$\mathrm{V}_{\text {FST }}$	ANxx	-	AVRH ± 5	AVRH ± 15	mV	
Conversion time	-	-	$0.8 *^{1}$	-	-	$\mu \mathrm{s}$	$\mathrm{AV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$
			$1.0{ }^{* 1}$	-	-		$\mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$
Sampling time ${ }^{*}{ }^{2}$	$\mathrm{t}_{\text {s }}$	-	0.24	-	10	$\mu \mathrm{s}$	$\mathrm{AV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$
			0.3	-			$\mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$
Compare clock cycle*3	$\mathrm{t}_{\text {CCK }}$	-	40	-	1000	ns	$\mathrm{AV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$
			50	-			$\mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$
State transition time to operation permission	$\mathrm{t}_{\text {STT }}$	-	-	-	1.0	$\mu \mathrm{s}$	
Analog input capacity	$\mathrm{C}_{\text {AIN }}$	-	-	-	9.7	pF	
Analog input resistor	$\mathrm{R}_{\text {AIN }}$	-	-	-	1.7	k Ω	$\mathrm{AV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$
					2.4		$\mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$
Interchannel disparity	-	-	-	-	4	LSB	
Analog port input current	-	ANxx	-	-	5	$\mu \mathrm{A}$	
Analog input voltage	-	ANxx	AVRL	-	AVRH	V	
Reference voltage	-	AVRH	2.7	-	$\mathrm{AV}_{\mathrm{CC}}$	V	
	-	AVRL	$\mathrm{AV}_{\text {SS }}$	-	$\mathrm{AV}_{\text {SS }}$	V	

*1: The conversion time is the value of sampling time $\left(\mathrm{t}_{\mathrm{s}}\right)+$ compare time $\left(\mathrm{t}_{\mathrm{C}}\right)$.
The condition of the minimum conversion time is the following.
$\mathrm{AV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$, HCLK=50 MHz sampling time: 240 ns , compare time: 560 ns
$\mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}, \mathrm{HCLK}=40 \mathrm{MHz}$ sampling time: 300 ns , compare time: 700 ns
Ensure that it satisfies the value of the sampling time (t_{s}) and compare clock cycle ($\mathrm{t}_{\mathrm{CCK}}$).
For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family
PERIPHERAL MANUAL Analog Macro Part".
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.
For the number of the APB bus to which the A/D Converter is connected, see "■Block Diagram".
The base clock (HCLK) is used to generate the sampling time and the compare clock cycle.
*2: A necessary sampling time changes by external impedance.
Ensure that it sets the sampling time to satisfy (Equation 1).
*3: The compare time $\left(\mathrm{t}_{\mathrm{C}}\right)$ is the value of (Equation 2).

(Equation 1) $\mathrm{t}_{\mathrm{S}} \geq\left(\mathrm{R}_{\mathrm{AIN}}+\mathrm{R}_{\mathrm{EXT}}\right) \times \mathrm{C}_{\mathrm{AIN}} \times 9$
t_{s} : \quad Sampling time
$\mathrm{R}_{\mathrm{AIN}}$: input resistor of $\mathrm{A} / \mathrm{D}=1.5 \mathrm{k} \Omega$ at $4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ ch. 0 to ch. 7 input resistor of $\mathrm{A} / \mathrm{D}=1.6 \mathrm{k} \Omega$ at $4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ ch. 8 to ch. 15 input resistor of $\mathrm{A} / \mathrm{D}=1.7 \mathrm{k} \Omega$ at $4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ ch. 16 to ch. 26 input resistor of $\mathrm{A} / \mathrm{D}=2.2 \mathrm{k} \Omega$ at $2.7 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$ ch. 0 to ch. 7 input resistor of $\mathrm{A} / \mathrm{D}=2.3 \mathrm{k} \Omega$ at $2.7 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$ ch. 8 to ch. 15 input resistor of $\mathrm{A} / \mathrm{D}=2.4 \mathrm{k} \Omega$ at $2.7 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}}<4.5 \mathrm{~V}$ ch. 16 to ch. 26
$\mathrm{C}_{\mathrm{AIN}}$: input capacity of $\mathrm{A} / \mathrm{D}=9.7 \mathrm{pF}$ at $2.7 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{ExT}}$: Output impedance of external circuit
(Equation 2) $\mathrm{t}_{\mathrm{C}}=\mathrm{t}_{\mathrm{CCK}} \times 14$
t_{C} : Compare time
$\mathrm{t}_{\mathrm{CCK}}$: Compare clock cycle

- Definition of 12-bit A/D Converter Terms
- Resolution:
- Integral Nonlinearity:
- Differential Nonlinearity:

Analog variation that is recognized by an A/D converter. Deviation of the line between the zero-transition point ($0 \mathrm{~b} 000000000000 \longleftrightarrow 0 \mathrm{~b} 000000000001$) and the full-scale transition point ($0 \mathrm{~b} 111111111110 \longleftrightarrow 0 \mathrm{~b} 111111111111$) from the actual conversion characteristics.
Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB .

6. 10-bit D/A Converter

- Electrical Characteristics for the D/A Converter
$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter		$\mathrm{AV}_{\mathrm{CC}}=$	Value			RL	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to
		Pin name				Unit	Remarks
	Symbol		Min	Typ	Max		
Resolution	-	DAx	-	-	10	bit	
Conversion time	$\mathrm{t}_{\mathrm{C} 20}$		0.47	0.58	0.69	$\mu \mathrm{s}$	Load 20 pF
	$\mathrm{t}_{\mathrm{C} 100}$		2.37	2.90	3.43	$\mu \mathrm{s}$	Load 100 pF
Integral Nonlinearity* ${ }^{1}$	INL		-4.0	-	+4.0	LSB	
Differential Nonlinearity* ${ }^{1, * *^{2}}$	DNL		-0.9	-	+ 0.9	LSB	
Output Voltage offset	$\mathrm{V}_{\text {OFF }}$		-	-	10.0	mV	Code is 0x000
			- 20.0	-	+ 5.4	mV	Code is 0x3FF
Analog output impedance	R_{O}		3.10	3.80	4.50	$\mathrm{k} \Omega$	D/A operation
			2.0	-	-	$\mathrm{M} \Omega$	D/A stop
Output undefined period	t_{R}		-	-	70	ns	

*1: No-load
*2: Generates the max current by the CODE about 0×200

7. USB Characteristics

Parameter		Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Conditions	Value		Unit	Remarks	
		Min			Max				
Input characteristics	Input H level voltage		$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \text { UDP0, } \\ & \text { UDM0 } \end{aligned}$	-	2.0	$\mathrm{USBV}_{\mathrm{CC}}+0.3$	V	*1
	Input L level voltage	$\mathrm{V}_{\text {IL }}$	-		$\mathrm{V}_{\text {SS }}-0.3$	0.8	V	*1	
	Differential input sensitivity	$\mathrm{V}_{\text {DI }}$	-		0.2	-	V	*2	
	Different common mode range	V_{CM}	-		0.8	2.5	V	*2	
Output characteristics	Output H level voltage	V_{OH}	External pull-down resistor $=$ $15 \mathrm{k} \Omega$		2.8	3.6	V	*3	
	Output L level voltage	$\mathrm{V}_{\text {OL }}$	External pull-up resistor $=$ $1.5 \mathrm{k} \Omega$		0.0	0.3	V	*3	
	Crossover voltage	$\mathrm{V}_{\text {CRS }}$	-		1.3	2.0	V	* 4	
	Rising time	t_{FR}	Full-Speed		4	20	ns	*5	
	Falling time	$\mathrm{t}_{\text {FF }}$	Full-Speed		4	20	ns	*5	
	Rising/falling time matching	$\mathrm{t}_{\text {FRFM }}$	Full-Speed		90	111.11	\%	*5	
	Output impedance	$\mathrm{Z}_{\mathrm{DRV}}$	Full-Speed		28	44	Ω	*6	
	Rising time	t_{LR}	Low-Speed		75	300	ns	*7	
	Falling time	$\mathrm{t}_{\text {LF }}$	Low-Speed		75	300	ns	*7	
	Rising/falling time matching	$\mathrm{t}_{\text {LRFM }}$	Low-Speed		80	125	\%	*7	

*1: The switching threshold voltage of the Single-End-Receiver of USB I/O buffer is set as within V_{IL}
$($ Max $)=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}(\mathrm{Min})=2.0 \mathrm{~V}$ (TTL input standard).
There are some hysteresis to lower noise sensitivity.
*2: Use the differential-Receiver to receive the USB differential data signal.
The Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.
The voltage range above is said to be the common mode input voltage range.

Common mode input voltage [V]
*3: The output drive capability of the driver is below 0.3 V at Low-State $\left(\mathrm{V}_{\mathrm{OL}}\right)$ (to 3.6 V and $1.5 \mathrm{k} \Omega$ load), and 2.8 V or above (to ground and $15 \mathrm{k} \Omega$ load) at High-State $\left(\mathrm{V}_{\mathrm{OH}}\right)$.
*4: The cross voltage of the external differential output signal ($\mathrm{D}+/ \mathrm{D}-$) of USB I/O buffer is within 1.3 V to 2.0 V .

*5: They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
For full-speed buffer, Tr/Tf ratio is regulated as within $\pm 10 \%$ to minimize RFI emission.

*6: USB Full-speed connection is performed via twist pair cable shield with $90 \Omega \pm 15 \%$ characteristic impedance (Differential Mode).
USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25Ω to 30Ω (recommendation value 27Ω) Series resistor Rs.

*7: They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage.

See "• Low-Speed Load (Compliance Load)" for conditions of the external load.

- Low-Speed Load (Upstream Port Load) - Reference 1

- Low-Speed Load (Downstream Port Load) - Reference 2

- Low-Speed Load (Compliance Load)

8. Low-Voltage Detection Characteristics

(1) Low-Voltage Detection Reset

Parameter	Symbol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{11}= \\ 00000 \end{gathered}$	2.25	2.45	2.65	V	When voltage drops
Released voltage	VDH		2.30	2.50	2.70	V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00001 \end{gathered}$	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH		Same as SVHR = 00000 value			V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00010 \end{gathered}$	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH		Same as SVHR = 00000 value			V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00011 \end{gathered}$	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH		Same as SVHR = 00000 value			V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00100 \end{gathered}$	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH		Same as SVHR = 00000 value			V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00101 \end{gathered}$	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH		Same as SVHR = 00000 value			V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00110 \end{gathered}$	3.31	3.60	3.89	V	When voltage drops
Released voltage	VDH			$\begin{aligned} & \mathrm{e} \text { as SV } \\ & 000 \mathrm{val} \end{aligned}$	$\begin{aligned} & \mathrm{HR}= \\ & \text { ue } \end{aligned}$	V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 00111 \end{gathered}$	3.40	3.70	4.00	V	When voltage drops
Released voltage	VDH			$\begin{aligned} & \mathrm{e} \text { as SV } \\ & 000 \mathrm{val} \end{aligned}$	$\begin{aligned} & \mathrm{HR}= \\ & \text { ue } \end{aligned}$	V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \mathrm{SVHR}^{* 1}= \\ 01000 \end{gathered}$	3.68	4.00	4.32	V	When voltage drops
Released voltage	VDH			$\begin{aligned} & \mathrm{e} \text { as SV } \\ & 000 \mathrm{val} \end{aligned}$	$\mathrm{HR}=$ ue	V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \mathrm{SVHR}^{* 1}= \\ 01001 \end{gathered}$	3.77	4.10	4.43	V	When voltage drops
Released voltage	VDH			$\begin{aligned} & \mathrm{e} \text { as SV } \\ & 000 \mathrm{val} \end{aligned}$	$\begin{aligned} & \mathrm{HR}= \\ & \text { ue } \end{aligned}$	V	When voltage rises
Detected voltage	VDL	$\begin{gathered} \text { SVHR }^{* 1}= \\ 01010 \end{gathered}$	3.86	4.20	4.54	V	When voltage drops
Released voltage	VDH		Same as SVHR = 00000 value			V	When voltage rises
LVD stabilization wait time	$\mathrm{t}_{\text {LVDW }}$	-	-	-	$\begin{aligned} & 8160 \times \\ & \mathrm{t}_{\mathrm{CYCP}} *^{* 2} \end{aligned}$	$\mu \mathrm{s}$	
LVD detection delay time	$\mathrm{t}_{\text {LVDDL }}$	-	-	-	200	$\mu \mathrm{s}$	

*1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to "00000" by Low-Voltage Detection Reset.
*2: $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB2 bus clock cycle time.
(2) Interrupt of Low-Voltage Detection

Parameter	Symbol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Detected voltage	VDL	SVHI $=00011$	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH		2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI $=00100$	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH		2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI $=00101$	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH		3.04	3.30	3.56	V	When voltage rises
Detected voltage	VDL	SVHI $=00110$	3.31	3.60	3.89	V	When voltage drops
Released voltage	VDH		3.40	3.70	4.00	V	When voltage rises
Detected voltage	VDL	SVHI $=00111$	3.40	3.70	4.00	V	When voltage drops
Released voltage	VDH		3.50	3.80	4.10	V	When voltage rises
Detected voltage	VDL	SVHI $=01000$	3.68	4.00	4.32	V	When voltage drops
Released voltage	VDH		3.77	4.10	4.43	V	When voltage rises
Detected voltage	VDL	SVHI $=01001$	3.77	4.10	4.43	V	When voltage drops
Released voltage	VDH		3.86	4.20	4.54	V	When voltage rises
Detected voltage	VDL	SVHI $=01010$	3.86	4.20	4.54	V	When voltage drops
Released voltage	VDH		3.96	4.30	4.64	V	When voltage rises
LVD stabilization wait time	$\mathrm{t}_{\text {LVDW }}$	-	-	-	$\begin{gathered} 8160 \times \\ \mathrm{t}_{\mathrm{CYCP}} \end{gathered}$	$\mu \mathrm{s}$	
LVD detection delay time	$\mathrm{t}_{\text {LVDDL }}$	-	-	-	200	$\mu \mathrm{s}$	

*: $\mathrm{t}_{\mathrm{CYCP}}$ indicates the APB2 bus clock cycle time.

9. Flash Memory Write/Erase Characteristics

(1) Write / Erase time

Parameter		$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$			
		Value		Unit	Remarks
		Typ	Max		
Sector erase time	Large Sector	1.1	2.7	s	Includes write time prior to internal erase
	Small Sector	0.3	0.9		
Half word (16-bit) write time		16	310	$\mu \mathrm{s}$	Not including system-level overhead time
Chip erase time		6.8	18	s	Includes write time prior to internal erase

*: The typical value is immediately after shipment, the maximam value is guarantee value under 10,000 cycle of erase/write.
(2) Write cycles and data hold time

Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20^{*}	
10,000	10^{*}	

*: At average $+85^{\circ} \mathrm{C}$

10. Return Time from Low-Power Consumption Mode

(1) Return Factor: Interrupt/WKUP

The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.

- Return Count Time
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Typ	Max*		
Sleep mode	$\mathrm{t}_{\mathrm{tcNT}}$	$\mathrm{t}_{\mathrm{CYCC}}$		$\mu \mathrm{s}$	
High-speed CR Timer mode, Main Timer mode, PLL Timer mode		40	80	$\mu \mathrm{s}$	
Low-speed CR Timer mode		340	680	$\mu \mathrm{s}$	
Sub Timer mode		680	860	$\mu \mathrm{s}$	
RTC mode, Stop mode		268	503	$\mu \mathrm{s}$	
Deep Standby RTC mode		308	583	$\mu \mathrm{s}$	When RAM is off
Deep Standby Stop mode		268	503	нs	When RAM is on

*: The maximum value depends on the accuracy of built-in CR.

- Operation example of return from Low-Power consumption mode (by external interrupt*)

[^1]- Operation example of return from Low-Power consumption mode (by internal resource interrupt*)

*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

Notes: - The return factor is different in each Low-Power consumption modes. See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL.

- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".
(2) Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.

- Return Count Time

Parameter	Symbol	$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$			
		Value		Unit	Remarks
		Typ	Max*		
Sleep mode	$\mathrm{t}_{\text {RCNT }}$	148	263	$\mu \mathrm{s}$	
High-speed CR Timer mode, Main Timer mode, PLL Timer mode		148	263	$\mu \mathrm{s}$	
Low-speed CR Timer mode		248	463	$\mu \mathrm{s}$	
Sub Timer mode		312	496	$\mu \mathrm{s}$	
RTC mode, Stop mode		268	503	$\mu \mathrm{s}$	
Deep Standby RTC mode		308	583	$\mu \mathrm{s}$	When RAM is off
Deep Standby Stop mode		268	503	$\mu \mathrm{s}$	When RAM is on

*: The maximum value depends on the accuracy of built-in CR.

- Operation example of return from Low-Power consumption mode (by INITX)

- Operation example of return from low power consumption mode (by internal resource reset*)

*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes: - The return factor is different in each Low-Power consumption modes. See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL.
- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".
- The time during the power-on reset/low-voltage detection reset is excluded. See "(6) Power-on Reset Timing in 4. AC Characteristics in ■Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset.
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.
- Ordering Information

| Part number | On-chip
 Flash
 memory | On-chip
 SRAM | Package |
| :---: | :---: | :---: | :---: | :---: | Packing

DataSheet

Part number	On-chip Flash memory	On-chip SRAM	Package	Packing
MB9BF521MBGL-GE1	Main: 64 Kbyte Work: 32 Kbyte	16 Kbyte	Plastic \cdot PFBGA	Tray
MB9BF522MBGL-GE1	Main: 128 Kbyte Work: 32 Kbyte	16 Kbyte		
MB9BF524MBGL-GE1	Main: 256 Kbyte Work: 32 Kbyte	32 Kbyte		

■ Package Dimensions

80-pin plastic LQFP	Lead pitch	0.50 mm
	Package width \times package length	$12.00 \mathrm{~mm} \times 12.00 \mathrm{~mm}$
Lead shape	Gullwing	
	Lead bend direction	Normal bend
Sealing method	Plastic mold	
Mounting height	1.70 mm MAX	

80-pin plastic LQFP	Lead pitch	0.65 mm
	Package width \times package length	$14.00 \mathrm{~mm} \times 14.00 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
(FPT-80P-M40)		

64-pin plastic LQFP	Lead pitch	0.50 mm
Package width \times package length	$10.00 \mathrm{~mm} \times 10.00 \mathrm{~mm}$	
Lead shape	Gullwing	
LFPT-64P-M38)	Noad bend	
direction	Sealing method	Plastic mold

64-pin plastic LQFP
 (FPT-64P-M38)

Dimensions in mm (inches).
Note: The values in parentheses are reference values.

64-pin plastic LQFP	Lead pitch	0.65 mm
Package width \times package length	$12.00 \mathrm{~mm} \times 12.00 \mathrm{~mm}$	
Lead shape	Gullwing	
SPT-64P-M39)	Plastic mold	

64-pin plastic LQFP
(FPT-64P-M39)

(c) 2010-2011 FUJITSU SEMICONDUCTOR LIMITED HMbF64-39Sc-2-2

Note 1) Pins width and pins thickness include plating thickness.

64-pin plastic QFN	Lead pitch	0.50 mm
	Package width \times package length	$9.00 \mathrm{~mm} \times 9.00 \mathrm{~mm}$
Sealing method	Plastic mold	
	Wounting height	0.90 mm MAX

48-pin plastic LQFP	Lead pitch	0.50 mm
Package width \times package length	$7.00 \mathrm{~mm} \times 7.00 \mathrm{~mm}$	
Lead shape	Gullwing	
(FPT-48P-M49)	Lead bend direction	Normal bend

48-pin plastic QFN	Lead pitch	0.5 mm
	Package width \times package length	$7.00 \mathrm{~mm} \times 7.00 \mathrm{~mm}$
	Sealing method	Plastic mold
	Wounting height	0.90 mm MAX

48-pin plastic QFN
(LCC-48P-M73)

Dimensions in mm (inches). Note: The values in parentheses are reference values.

Lead pitch	0.5 mm	
Package width \times package length	$6.00 \mathrm{~mm} \times 6.00 \mathrm{~mm}$	
	Lead shape	Ball
	Sealing method	Plastic mold
	Wounting height	1.30 mm MAX

96-pin plastic FBGA
 (BGA-96P-M07)

© 2012 FUJITSU SEMICONDUCTOR LIMITED B96007S-C-1-1
Dimensions in mm (inches). Note: The values in parentheses are reference values.

■ Major Changes

Page	Section	Change Results
Revision 1.0		
-	-	Preliminary \rightarrow Data Sheet
2	- FEATURES - CAN Interface	Corrected the following description. CAN Interface (Max 2channels) \rightarrow CAN Interface
3	- A/D Converter (Max 26channels)	Revised the conversion time: $1.0 \mu \mathrm{~s} \rightarrow 0.8 \mu \mathrm{~s}$
6	- UniqueID	Added the "Unique ID".
7	■PRODUCT LINEUP - Function	Added the "Unique ID".
16 to 18	-LIST OF PIN FUNCTIONS - List of pin numbers	- Corrected the I/O circuit type. - Corrected the Pin state type.
33	- List of pin functions	Corrected the Pin function.
39	■I/O CIRCUIT TYPE	Added the "Type: L".
46	-BLOCK DIAGRAM	Corrected the figure. - TIOA: input \rightarrow input/output - TIOB: output \rightarrow input
55	■ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	Revised the value of "TBD".
57	2. Recommended Operating Conditions	Revised the Condition of "Operating temperature".
58, 59	3. DC Characteristics (1) Current Rating	- Revised the value of "TBD". - Added "Flash memory write/erase current".
62	4. AC Characteristics (3) Built-in CR Oscillation Characteristics	- Revised the Condition. - Revised the footnote.
63	(4-2) Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of main PLL)	Revised the value of "TBD".
79	5. 12-bit A/D Converter - Electrical characteristics for the A/D converter	- Deleted "(Preliminary value)". - Revised the conversion time. Min: $1.0 \mu \mathrm{~s} \rightarrow 0.8 \mu \mathrm{~s}$ - Revised the value of "Compare clock cycle $\left(\mathrm{AV}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}\right)$ ". Min: $50 \mathrm{~ns} \rightarrow 40 \mathrm{~ns}$ - Revised the footnote.
82	6. 10-bit D/A Converter	Deleted "(Preliminary value)".
87	8. Low-Voltage Detection Characteristics	Revised the value of "TBD".
88	9. MainFlash Memory Write/Erase Characteristics	- Revised the value of "TBD". - Revised the value of "Sector erase time". - Large Sector Typ: $1.065 \mathrm{~s} \rightarrow 1.1 \mathrm{~s}$ - Small Sector Typ: 0.606s $\rightarrow 0.3 \mathrm{~s}$ - Revised the value of "Chip erase time". Typ: $9.11 \mathrm{~s} \rightarrow 6.8 \mathrm{~s}$ - Deleted "(targeted value)".
Revision 1.1		
-	-	Company name and layout design change
Revision 2.0		
2	-FEATURES - On-chip Memories [Flash memory]	Revised the features of Dual operation Flash memory
	- USB Interface [USB function]	Added the size of each endpoint.
3	- Multi-function Serial Interface [$\left.{ }^{2} \mathrm{C}\right]$	Corrected the mode. High speed mode \rightarrow Fast mode
4	- General-Purpose I/O Port	Revised the features of 5 V tolerant I/O.
	- Multi-function Timer	Corrected the number of A / D activating compare channels. $3 \mathrm{ch} . \rightarrow 2 \mathrm{ch}$.
7	■PRODUCT LINEUP - Function	- Corrected the number of A/D activating compare channels. 3ch. $\rightarrow 2 \mathrm{ch}$. - Revised Built-in CR . High-speed: $4 \mathrm{MHz}(\pm 2 \%) \rightarrow 4 \mathrm{MHz}$ Low-speed: $100 \mathrm{kHz}(\mathrm{Typ}) \rightarrow 100 \mathrm{kHz}$
8		Revised the footnote.
21	■LIST OF PIN FUNCTIONS - List of pin numbers	Corrected the pin number of ZIN1_1.
24	- List of pin functions	Corrected the pin number of ADTG_2.
29		Corrected pin numbers of SIN0_1 and SOT0_1.
31		Corrected the pin number of DTTIOX_2.
37	- I/O CIRCUIT TYPE	Corrested the I/O circuit figure. TYPE H : GPIO Digital input \rightarrow GPIO Digital output

Page	Section	Change Results
44	- HANDLING DEVICES - Sub crystal oscillator	Added the descriptions.
47	-BLOCK DIAGRAM	Corrected the figure. -A/D Activation Compare: 3ch $\rightarrow 2 \mathrm{ch}$
49	- MEMORY MAP - Memory Map (2)	Added the explanatory note.
54		Added the pin function of selected Analog output about type L.
55	- List of Pin Status	- Corrected the footnote. Sub CR timer \rightarrow Low-speed CR tim
58	- ELECTRICAL CHARACTERISTICS 2. Recommended Operating Conditions	- Added the note and footnote. - Corrected the value of Analog reference voltage "AVRH". Min.: AVss $\rightarrow 2.7$
59	3. DC Characteristics (1) Current Rating	- Added notes and footnotes. - Added the remarks of Icc. - Added the frequency of main clock crystal oscillator in remarks.
63	4. AC Characteristics (2) Sub clock input Characteristics	Added the footnote.
64	(3) Built-in CR Oscillation Characteristics - Built-in High-speed CR	- Added "Frequency stabilization time" - Added notes and footnotes.
66	(6) Power-on Reset Timing	- Added "Timing until releaseing Power-on reset" - Added the timing chart
68	(8) CSIO Timing	- Corrected the title. UART Timing \rightarrow CSIO Timing - Corrected the notefoot. UART \rightarrow Multi-function serial
70,72,74		Corrected the notefoot. UART \rightarrow Multi-function serial
79	(11) $\mathrm{I}^{2} \mathrm{C}$ Timing	- Revised the Condition. - Revised the footnote.
81	5. 12-bit A/D Converter - Electrical characteristics for the A/D converter	- Changed the name of parameter. \bullet Non Linearity error \rightarrow Integral Nonlinearity -Differential linearity error \rightarrow Differential Nonlinearity - Changed the Symbol. Of Zero transition voltage. $\mathrm{Vo}_{\mathrm{T}} \rightarrow \mathrm{~V}_{\mathrm{ZT}}$ - Changed the pin name. $\text { AN00 to AN26 } \rightarrow \text { ANxx }$ - Corrected the value of $\mathrm{V}_{0 \mathrm{~T},} \mathrm{~V}_{\mathrm{FST}}, \mathrm{Ts}$, Tstt, and reference voltage. - Revides footnotes.
82		Change the figure. $\text { AN00 to AN26 } \rightarrow \text { ANxx }$
83	- Difinition of 12-bit A/D Converter Terms	\cdot Linearity error \rightarrow Integral Nonlinearity \bullet Differential linearity error \rightarrow Differential Nonlinearity - $\mathrm{V}_{\text {0T }} \rightarrow \mathrm{V}_{\mathrm{ZT}}$
84	6. 10-bit D/A Converter - Electrical characteristics for the D/A converter	-Revised the remark of IDDA. D/A operation \rightarrow D/A 1unit operation - Changed the name of parameter. \cdot Linearity error \rightarrow Integral Nonlinearity -Differential linearity error \rightarrow Differential Nonlinearity
89	8. Low-Voltage Detection Characteristics (1) Low-Voltage Detection Reset	- Corrected the condition and the value. - Added the note and the footnote. - Added "LVD detection delay time".
90	(2) Interrupt of Low-Voltage Detection	- Corrected the condition and the value. - Added "LVD detection delay time".
91	9. Flash Memory Write/Erase Characteristics	Changed the title of Chapter. Main Flash Memory Write/Erase Characteristics \rightarrow Flash Memory Write/Erase Characteristics
92	10. Return Time Low-Power Consumption Mode	Added the Chapter "Return Time from Low-Power Consumption Mode".
Revision 3		
2	■Features - USB Interface	Added the description of PLL for USB
36,37	- I/O Circuit Type	Added about +B input
49	-Memory Map - Memory map(2)	Added the summary of Flash memory sector and the note
54	-PIN STATUS IN EACH CPU STAE - List of Pin Status	Changed the pin status of I-type
56, 57	- Electrical Characteristics 1. Absolute Maximum Ratings	- Added the Clamp maximum current - Added about +B input
59-61	■Electrical Characteristics 3. DC Characteristics (1) Current rating	- Changed the table format - Added Main TIMER mode current - Moved A/D Converter Current - Moved D/A Converter Current

D a t a She et

Page	Section	Change Results
66	■Electrical Characteristics 4. AC Characteristics (4-1) Operating Conditions of Main and USB PLL (4-2) Operating Conditions of Main PLL	• Added the figure of Main PLL connection and USB PLL connection

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.
Copyright © 2012-2015 Spansion Inc. All rights reserved. Spansion ${ }^{\circledR}$, the Spansion logo, MirrorBit ${ }^{\circledR}$, MirrorBit ${ }^{\circledR}$ Eclipse ${ }^{\mathrm{TM}}$, ORNAND ${ }^{\mathrm{TM}}$, Easy DesignSim ${ }^{\mathrm{TM}}$, Traveo ${ }^{\mathrm{TM}}$ and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.

[^0]: SCK

[^1]: *: External interrupt is set to detecting fall edge.

