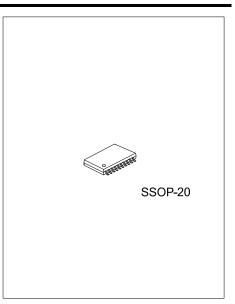
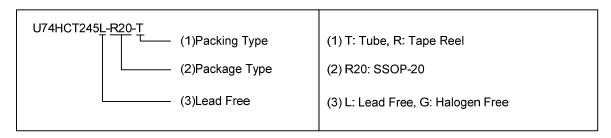
OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

■ DESCRIPTION

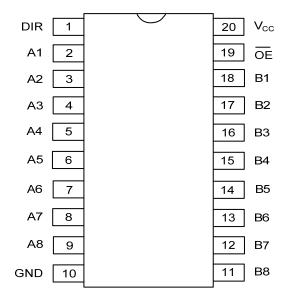

The **U74AHC245** octal bus transceivers is designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.



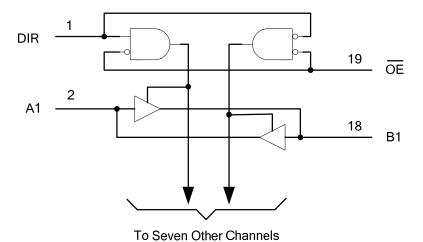
^{*} Operating range 2V to 5.5V V_{CC}



ORDERING INFORMATION

Ordering Number		Dookaga	Packing	
Lead Free	Halogen Free	- Package Packing		
U74AHC245L-R20-T	U74AHC245G-R20-T	SSOP-20	Tube	
U74AHC245L-R20-R	U74AHC245G-R20-R	SSOP-20	Tape Reel	

■ PIN CONFIGURATION



■ FUNCTION TABLE

INPUT			
ŌE	DIR	FUNCTION	
Н	X	Isolation	
L	Н	Transmit data from A bus to B bus	
L	L	Transmit data from B bus to A bus	

Note: H: HIGH voltage level; L: LOW voltage level; X:Don't care

■ LOGIC DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.5~7.0	V
Input Voltage Range	Vı	-0.5~7.0	V
Output Voltage Range	Vo	-0.5~V _{CC} +0.5	V
Input Clamp Current (V _{iN} <0)	I _{IK}	-20	mA
Output Clamp Current (V _O <0 or V _O >V _{CC})	I _{OK}	±20	mA
Output Current	I _{OUT}	±25	mA
V _{CC} or GND Current	Icc	±75	mA
Storage Temperature	T _{STG}	-65 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

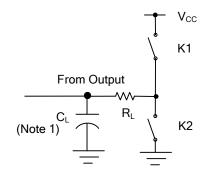
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

■ RECOMMENDED OPERATING CONDITIONS

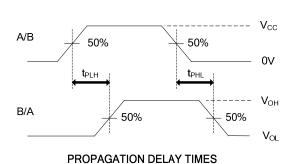
PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage		Vcc	2		5.5	V
Input Voltage		V _{IN}	0		5.5	V
Output Voltage		V_{OUT}	0		Vcc	V
Operating Temperature		T _{OPR}	-40		85	°C
V _{CC} =3.3V±0.3V		A 1 / A	A 4 / A		100	A /
Input Transition Rise or Fall Rate	V _{CC} =5V±0.5V	Δt/Δν			20	ns/V
Operating Free-air Temperature		T _A	-40		85	°C

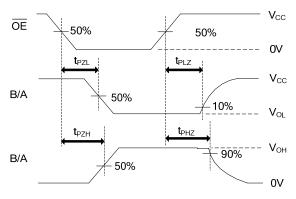
■ **ELECTRICAL CHARACTERISTICS** (T_a=25°C, unless otherwise specified)

PARAMETE	R	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
HIGH-level input voltage		V_{IH}	V _{CC} =2V	1.5			V
			V _{CC} =3V	2.1			
			V _{CC} =5.5V	3.85			
			V _{CC} =2V			0.5	
LOW-lever output voltag	ge	V_{IL}	V _{CC} =3V			0.9	V
			V _{CC} =5.5V			1.65	
			V _{CC} =2V, I _{OH} =-50μA	1.9	2		
			V _{CC} =3V, I _{OH} =-50μA	2.9	3		
High-Level Output Volta	age	V_{OH}	V _{CC} =4.5V, I _{OH} =-50μA	4.4	4.5		V
			V _{CC} =3V, I _{OH} =-4mA	2.58			
			V _{CC} =4.5V, I _{OH} =-8mA	3.94			
			V_{CC} =2V, I_{OL} =50 μ A			0.1	
			V _{CC} =3V, I _{OL} =50μA			0.1	
Low-Level Output Voltage	ge	V_{OL}	V _{CC} =4.5V, I _{OL} =50μA			0.1	V
			V _{CC} =3V, I _{OL} =4mA			0.36	
			V _{CC} =4.5V, I _{OL} =8mA			0.36	
	A or B inputs		V_{CC} =5.5V, V_{IN} = V_{CC} or GND			. 0.4	
Input Leakage Current OE or DIR		I _{I(LEAK)}	V _{CC} =0 to 5.5V, V _{IN} =V _{CC} or GND			±0.1	μA
Output OFF-state currer	nt	l _{oz}	V _{CC} =5.5V, V _{OUT} =V _{CC} or GND			±0.25	μΑ
Quiescent Supply Curre	ent	ΙQ	V_{CC} =5.5V, V_{IN} = V_{CC} or GND, I_{OUT} =0			4	μΑ
Input Capacitance(OE	or DIR)	C_{I}	V _{CC} =5V, V _{IN} =V _{CC} or GND		2.5	10	pF
Input Capacitance(A or	B inputs)	C_{IO}	V _{CC} =5V, V _{IN} =V _{CC} or GND		4		pF


■ SWITCHING CHARACTERISTICS (T_A=25°C, R_L=1kΩ,unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{CC} =3.3V±0.3V, C _L =15pF		5.8	8.4	
Propagation delay from input	t_{pd}	V _{CC} =3.3V±0.3V, C _L =50pF		8.3	11.9	200
(A or B) to output (B or A)	(t_{PLH}/t_{PHL})	V _{CC} =5V±0.5V, C _L =15pF		4	5.5	ns
		V _{CC} =5V±0.5V, C _L =50pF		5.5	7.5	
		V _{CC} =3.3V±0.3V, C _L =15pF		8.5	13.2	
3-state output enable time from input	t_{en}	V _{CC} =3.3V±0.3V, C _L =50pF		11	16.7	20
(OE) to output (A or B)	(t_{PZL}/t_{PZH})	V _{CC} =5V±0.5V, C _L =15pF		5.8	8.5	ns
		V _{CC} =5V±0.5V, C _L =50pF		7.3	10.6	
		V _{CC} =3.3V±0.3V, C _L =15pF		8.9	12.5	
3-state output disable time from	t_{dis}	V _{CC} =3.3V±0.3V, C _L =50pF		11.5	15.8	20
input (OE) to output (A or B)	(t_{PLZ}/t_{PHZ})	V _{CC} =5V±0.5V, C _L =15pF		5.6	7.8	ns
		V _{CC} =5V±0.5V, C _L =50pF		7	9.7	


■ OPERATING CHARACTERISTICS(V_{CC}=5V, T_A=25°C)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Dissipation Capacitance	C_PD	No load, f=1MHz		14		рF

■ TEST CIRCUIT AND WAVEFORMS

TEST	K1	K2
t _{PLH} /t _{PHL}	Open	Open
t _{PHZ} /t _{PZH}	Open	Close
t _{PLZ} /t _{PZL}	Close	Open

ENABLE AND DISABLE TIMES

Notes: 1. C_L includes probe and jig capacitance.

- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHZ, Z_0 =50 Ω , t_r \leq 3ns, t_f \leq 3ns.
- 3. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.