

A Unit of Teledyne Electronic Technologies

Part Number Description

LPBD100

.25A, 100Vdc dual solid-state relay

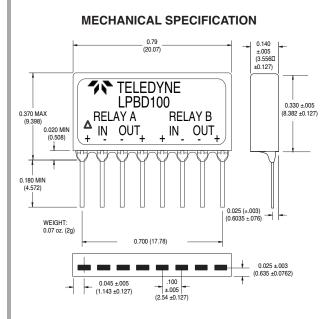
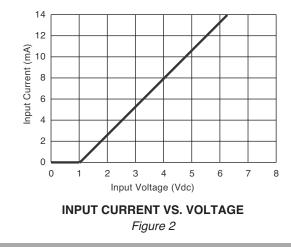
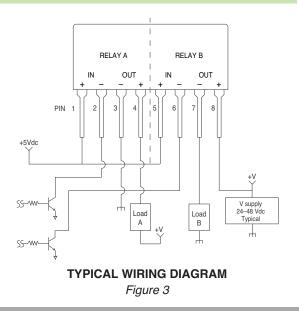



Figure 1 – LPBD100 relay; dimensions in inches (mm)

INPUT (CONTROL) SPECIFICATIONS

	Min	Max	Units
Control Voltage Range	4.0	7.0	Vdc
(See Note 1)			
Input Current @ 5 Vdc (See Figure 2)		12	mAdc
Must Turn-On Voltage		0.8	Vdc
Must Turn-Off Voltage	4.0		Vdc
Must Turn-On Current		50	μAdc
Reverse Voltage	7		Vdc

FEATURES/BENEFITS


- · Compact SIP plastic package
- · Dual output: two relays in one package
- · Normally closed output
- Low voltage drop

DESCRIPTION

The LPBD100 is a dual-output 100Vdc plastic relay. The relay output-switch contacts are normally closed and will conduct the load current until a voltage is applied to the relay input. With 4 volts or more at the relay input, the output-switch contacts open and the relay no longer conducts. The LPBD100 assembly contains two independent relays, completely isolated from each other, in a single in-line package (SIP). The relays provide optical isolation between input and output terminals. Each relay output circuit uses a pair of depletion-mode MOSFETs for reliable operation.

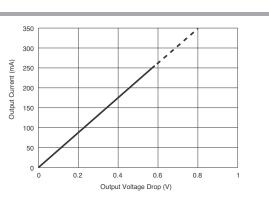
APPLICATIONS

- Interface applications
- Aircraft flight control systems
- A.T.E
- · 28Vdc aircraft instrumentation systems

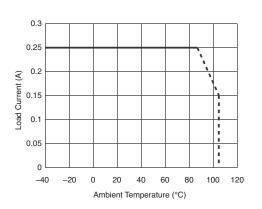
Series LPBD100

250mA, 100Vdc Normally Closed Dual Relay

A Unit of Teledyne Electronic Technologies


Series LPBD100

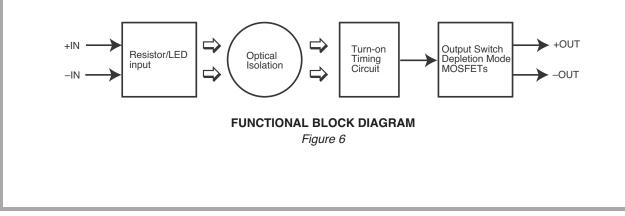
OUTPUT (LOAD) SPECIFICATION


Min	Max	Units
Load Voltage Rating	100	Vdc
Load Current Range (See Figure	5) 0.25	Adc
Transient Blocking Voltage	200	Vdc
Output Capacitance@ 25Vdc	120	pF
On-State Voltage Drop (See Figur	e 4) 1.25	Vdc
On Resistance	5.0	Ohm
Off-State Leakage Current (100 V	′dc) 10	μAdc
Turn-On Time	0.5	ms
Turn-Off Time	2.5	ms

ENVIRONMENTAL SPECIFICATION

		Min	Мах	Units
Operating Tempera	ture	-40	+85	°C
Storage Temperatur	re	-55	+100	°C
Junction Temperatu	re		125	°C
Thermal Resistance	е			
(Junction to Ambier	nt) each	n relay	120	°C/W
Shock			1500	g
Vibration			100	g
Dielectric Strength		500		Vac
Insulation Resistan	се			
(@500 Vdc)		10 ⁹		Ohm
Input to Output Cap	acitanc	e	5	pF
Resistance to				
Soldering Heat	MIL STD 202, method 210			
Solderability	MIL STD 202, method 208			
Thermal Shock	MIL S	TD 202, me	ethod 107	
Altitude		55,000		ft
HAST	JDEC	Test Metho	od A110	
	, no power			
	арр	lied, 50 ho	urs	

OUTPUT CURRENT VS. VOLTAGE DROP Figure 4



LOAD CURRENT VS. AMBIENT TEMPERATURE

Figure 5

NOTES:

- 1. For input voltages greater than 7 volts, use an external resistor in series with the relay input. Rext. = (Vin–7 Vdc)/0.012 Amps
- Unless otherwise specified: conformance testing is at room temperature; the input voltage is 5Vdc or zero volts as required; the output load is 48Vdc, 0.25 amp.
- Relay input voltage transitions should be less than 1.0 millisecond.
- 4. Maximum load current ratings are with the relay in free air and
- soldered to a printed circuit board.
 Timing is measured from the input voltage transition to the 10% or 90% point on the output voltage off-to-on or on-to-off transition. Rise and fall times are from the 10% to 90% points on the output voltage transition.

