

DRAFT SPECIFICATION

Part No.	:	MA9000.A.LBIWXYZCGHM.001
Product Name	:	MA9000 11in1 Adhesive Mount Guardian Antenna LTE MIMO + Wi-Fi MIMO + GNSS
Features	:	6*LTE MIMO Antennas (3x2 MIMO) 698-960MHz/1710-2170MHz/2490-2690MHz 4*MIMO Dual Band Wi-Fi Antenna (2x2 MIMO) 2400-2500MHz/4900-5850MHz Worldwide 4G Bands including 3G and 2G GPS/GLONASS 1575.42–1602MHz Active Patch IP67 Enclosure Dims: 540*185*35mm 1M cable (CFD-200-FR) with Fakra connectors as standard Custom Cables and Connectors Available RoHS Compliant

1 Introduction

The MA9000 Guardian antenna is a low profile, heavy-duty, fully IP67 waterproof external M2M antenna for use in worldwide telematics applications which require best in class LTE and Wi-Fi performance.

This unique product delivers powerful worldwide 4G LTE MIMO antenna technology at 700MHz/800MHz/1700MHz/1800MHz/2600MHz and dual band Wi-Fi. It uses Flame Retardant Cables making it ideal for Airline, Bus and Rail applications.

Typical applications:

- Passenger Bus / Rail / Air Applications.
- Automotive and Heavy Equipment Vehicle Tracking and Telematics
- Remote Asset and Pipeline Monitoring
- HD Video over LTE
- First Responder and Emergency Services
- M2M Applications/IoT

LTE 4G applications demand high speed data uplink and downlink. High efficiency and high gain MIMO antennas are necessary to achieve the required signal to noise ratio and throughput required to solve these challenges. Taoglas also takes care to have high isolation between the two MIMO antennas to prevent self-interference. Low loss cables are used to keep efficiency high over long cable lengths. In contrast, smaller MIMO antennas with poorer quality thinner cables will have much reduced efficiency and isolation, which would lead to a large drop in system throughput, increased number of drops, and may indeed not make a system connection at all.

Cable length and connector types are customizable.

Contact your regional Taoglas sales office for support.

2 Specification

			2G/3G/4G Ce	ellular		
LTE Band Class	20	8	3	1	40	7
Frequency MHz	791~862	880~960	1710~1880	1920~2170	2300~2400	2500~2690
			Efficien	су (%)		
LTE - Antenna 1	50	46	48	48	34	39
LTE - Antenna 2	37	24	43	35	44	50
LTE - Antenna 3	36	26	48	48	50	48
LTE - Antenna 7	38	27	47	39	43	48
LTE - Antenna 8	43	28	42	26	51	45
LTE - Antenna 9	56	47	58	45	38	39
			Peak Ga	in (dBi)		
LTE - Antenna 1	2.6	1.6	1.1	1.1	0.4	1.8
LTE - Antenna 2	-0.3	-1.9	2.6	1.2	1.2	2.8
LTE - Antenna 3	0.1	-1.7	3.2	3.0	3.1	3.6
LTE - Antenna 7	1.3	0.2	2.1	1.2	2.4	3.4
LTE - Antenna 8	0	-1.0	1.5	0.4	2.0	2.0
LTE - Antenna 9	1.6	0.6	1.9	2.2	1.0	1.7

Wi-Fi Antenna Performance							
	2400MHz	2450MHz	2500MHz	5150MHz	5300MHz	5800MHz	
			Efficier	псу (%)			
Wi-Fi - Antenna 4	57	52	59	-	-	-	
Wi-Fi - Antenna 5	45	39	46	38	46	37	
Wi-Fi - Antenna 6	43	38	42	25	37	38	
Wi-Fi - Antenna 10	53	53	56	-	-	-	
	Peak Gain (dBi)						
Wi-Fi - Antenna 4	3.9	4.0	4.4	-	-	-	
Wi-Fi - Antenna 5	2.5	2.5	2.9	2.8	3.9	2.6	
Wi-Fi - Antenna 6	1.3	1.9	3.0	0.6	2.8	3.1	
Wi-Fi - Antenna 10	2.8	2.1	2.2	-	-	-	

Impedance	50Ω
Polarization	Linear
VSWR	< 3 (when measured with 100mm 1.37 cable)
Cable	1 meter CFD-200-FR standard, fully customizable
Connector	Fakra standard, fully customizable

GNSS Antenna						
Frequency	GPS: 1575.42 ± 1.023MHz GLONASS: 1602 ± 5MHz					
Polarization	RHCP					
Antenna Gain at Zenith (Ceramic Patch only)	GPS: 1.5 dBi typ. @zenith GLONASS: +0 dBi typ. @zenith					
Total Antenna Gain at Zenith (Antenna+SAW+LNA+ Cable+Connector)	GPS 1575.42MHz: 26 \pm 3dBi GLONASS 1602MHz: 27.5 \pm 3dBi					
Impedance	50Ω					
Output VSWR	Max 2.0					
Ν	1ECHANICAL					
Connector	Fakra					
Cable	1M CFD-200-FR					

ELECTRICAL							
Free	quency	1574~1610MHz.					
Out of Ban	d Attenuation	1592 ± 140MHz 1	5dB min				
Output 2	Impedance	50Ω					
Outpu	ut VSWR	2.0 Max					
Pout at	1dB Gain	-2 dBm Typ.					
Compre	ssion Point	-6dBm Min					
	LNA Gain, Pov	wer Consumption and Noise Figure					
Voltage	LNA Gain (Typ) Power Consumption (Typ)	Noise Figure (Typ)				
Min 1.8V	22dB	5mA	2.6dB				
Typ 3.0V	28dB	10mA	2.6dB				
Max 5.5V	31dB	23mA	2.9dB				

MECHANICAL					
Antenna Dimension	540*185*35mm				
Casing	PC coated UV stabilized ABS				
Connector	Fakra				
Cable	1M CFD-200-FR				
Weight(g)	ТВС				
Base and Thread	ТВС				

ENVIRONMENTAL					
Operation Temperature	-40°C to +85°C				
Storage Temperature	-40°C to +90°C				
Humidity	Non-condensing 65°C 95% RH				

2.1 GNSS

3 Test Set Up

New image to be included here.

Figure 1. Left: *S*₁₁ and VSWR test set up; Right: OTA test set up in Taoglas Ireland ETS-Lindgren Chamber

In all measurements 1m CFD-200-FR cable with a 100mm Fakra to SMA pigtail was used to connect to the antenna board.

4 Antenna Performance

4.1 Return Loss

Frequency [MHz]

Figure 4. Return Loss of the Wi-Fi Antenna 4 and 10

Figure 5. Return Loss of the Wi-Fi Antenna 6

4.2 **VSWR**

Figure 6. VSWR of the Antenna 1, 2, 3

Figure 7. VSWR of Antenna 7, 8, 9

Figure 8. VSWR of Antenna 4 and 10

Figure 9. VSWR of Antenna 6

4.3 Isolation

Figure 10. Isolation results between LTE antennas

Figure 11. Isolation results between LTE antennas

Figure 12. Isolation results between Wi-Fi antennas

Figure 13. Isolation result between Wi-Fi Antenna 4G & LTE Antenna 1 antennas

4.4 Efficiency

Figure 15. Efficiency of Antennas 7, 8, 9

Figure 17. Efficiency of Antennas 5 and 6

6 Antenna 1 5 Antenna 2 4 Antenna 3 3 2 Gain [dBi] 1 0 - 1 -2 -3 -4 -5 -6 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 Frequency [MHz]

4.5 Peak Gain

Figure 18. Peak gain of Antenna 1, 2, 3

Figure 19. Peak gain of Antenna 7, 8, 9

4.6 Average Gain

Figure 23. Average gain of Antennas 7, 8, 9

Figure 24. Average gain of Antennas 4 and 10

Figure 25. Average gain of Antennas 5 and 6

4.7 LNA Gain and Out Band Rejection @ 3V

Ch1	Tr1	S21	1	1.5740000	GHz	28.186	dB	
Ch1	Tr1	S21	>2	1.6100000	GHz	27.949	dB	
Ch1	Tr1	S21	3	1.5920000	GHz	29.044	dB	
Ch1	Tr1	S21	4	1.5420000	GHz	9.0245	dB	
Ch1	Tr1	S21	5	1.6420000	GHz	-10.035	dB	
Ch1	Tr1	S21	6	1.4920000	GHz	4.4105	dB	
Ch1	Tr1	S21	7	1.6920000	GHz	-14.431	dB	
Ch1	Tr2	S22	1	1.5740000	GHz	1.0816		
Ch1	Tr2	S22	2	1.6100000	GHz	1.1855		
Ch1	Tr2	S22	3	1.5920000	GHz	1.2488		
Ch1	Tr2	S22	4	1.5420000	GHz	1.3486		

4.8 LNA Noise Figure @ 3V

4.9 2D Radiation Patterns

_____1880MHz -2170MHz _____2300MHz _____2690MHz (dBi)

4.9.7 Antenna 7

4.10 2D Radiation Pattern for 1575.42MHz XZ & YZ Plane

Patte	ern	Model No.	Test Mode	Freq (MHz)	Max Gain(dBi)	Min Gain(dBi)	Avg. Gain(dBi)	Source Polar.
1		AGGP.25F.07.0060A	XZ	1575.42	-1.41/343.00	-5.88 / 82.00	-3.32	V+H
2		AGGP.25F.07.0060A	YZ	1575.42	-1.09 / 0.00	-5.80 / 99.00	-2.76	V+H

4.11 2D Radiation Pattern for 1602MHZ XZ & YZ Plane

Patt	ern	Model No.	Test Mode	Freq (MHz)	Max Gain(dBi)	Min Gain(dBi)	Avg. Gain(dBi)	Source Polar.
1		AGGP.25F.07.0060A	XZ	1602.00	0.28 / 338.00	-12.36 / 99.00	-2.49	V+H
2		AGGP.25F.07.0060A	YZ	1602.00	0.19 / 0.00	-2.17 / 260.00	-0.91	V+H

5 Mechanical Drawing

Currently under development

Draft Specification – Subject to Change DSP-16-08-065/A Page 26 of 28

6 Packing Information

Currently under development

Draft Specification – Subject to Change DSP-16-08-065/A Page 27 of 28

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein.

Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

Copyright © Taoglas Ltd.