Part Number Hot Search : 
IRFF310 BU401 33035P 00339 HLMPDL24 ADV71 471ME LCH1035
Product Description
Full Text Search
 

To Download IRFRU3504 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr3504 irfu3504 hexfet ? power mosfet absolute maximum ratings parameter typ. max. units r jc junction-to-case ??? 1.09 r ja junction-to-ambient (pcb mount)  ??? 50 c/w r ja junction-to-ambient ??? 110 thermal resistance v dss = 40v r ds(on) = 9.2m ? i d = 30a  www.kersemi.com 1 automotive mosfet description specifically designed for automotive applications, this hexfet? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. addi- tional features of this product are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. s d g features advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax d-pak irfr3504 i-pak irfu3504 parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 87 i d @ t c = 100c continuous drain current, v gs @ 10v (see fig.9) 61 a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) 30 i dm pulsed drain current   350 p d @t c = 25c power dissipation 140 w linear derating factor 0.92 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  240 mj e as (tested) single pulse avalanche energy tested value  480 i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c pd - 94499a
 2 www.kersemi.com parameter min. typ. max. units conditions i s continuous source cur rent mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 30a, v gs = 0v  t rr reverse recovery time ??? 53 80 ns t j = 25c, i f = 30a, v dd = 20v q rr reverse recovery charge ??? 86 130 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) electrical characteristics @ t j = 25c (unless otherwise specified) s d g source-drain ratings and characteristics 87 350  parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.041 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 7.8 9.2 m ? v gs = 10v, i d = 30a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 40 ??? ??? s v ds = 10v, i d = 30a ??? ??? 20 a v ds = 40v, v gs = 0v ??? ??? 250 v ds = 40v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 48 71 i d = 30a q gs gate-to-source charge ??? 12 18 nc v ds = 32v q gd gate-to-drain ("miller") charge ??? 13 20 v gs = 10v  t d(on) turn-on delay time ??? 11 ??? v dd = 20v t r rise time ??? 53 ??? i d = 30a t d(off) turn-off delay time ??? 36 ??? r g = 6.8 ? t f fall time ??? 22 ??? v gs = 10v  l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 2150 ??? v gs = 0v c oss output capacitance ??? 580 ??? v ds = 25v c rss reverse transfer capacitance ??? 46 ??? pf ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 2830 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 510 ??? v gs = 0v, v ds = 32v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 870 ??? v gs = 0v, v ds = 0v to 32v s d g i gss ns i dss drain-to-source leakage current
 www.kersemi.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.0v 20s pulse width tj = 25c vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.0v 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 v gs , gate-to-source voltage (v) 0.10 1.00 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.0v 20s pulse width tj = 175c vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.0v fig 4. typical forward transconductance vs. drain current 0 20 40 60 80 100 120 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 70 80 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 25v  20s pulse width
 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 10 20 30 40 50 0 2 4 6 8 10 12 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 30a v = 8v ds v = 20v ds v = 32v ds 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss
 www.kersemi.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 87a 25 50 75 100 125 150 175 0 20 40 60 80 100 t , case temperature ( c) i , drain current (a) c d limited by package
 6 www.kersemi.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 0 100 200 300 400 500 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 12a 21a 30a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a
 www.kersemi.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7.  t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming  tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 30a
 8 www.kersemi.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
 www.kersemi.com 9  

   
      
    

 6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1.02 (.040) 1.64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min. 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006).                  
              
   
                                                        
                                                      
    !      "    
 10 www.kersemi.com  
   
      
    
  6.73 (.265) 6.35 (.250) - a - 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 2.28 (.090) 1.14 (.045) 0.76 (.030) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions show n are before solder dip, solder dip max. +0.16 (.006). 9.65 (.380) 8.89 (.350) 2x 3x 2.28 (.090) 1.91 (.075) 1.52 (.060) 1.15 (.045) 4 1 2 3 6.45 (.245) 5.68 (.224) 0.58 (.023) 0.46 (.018)
 www.kersemi.com 11   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.52mh, r g = 25 ? , i as = 30a, v gs =10v. part not recommended for use above this value.  i sd 30a, di/dt 170a/s, v dd v (br)dss , t j 175c.  pulse width 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to


▲Up To Search▲   

 
Price & Availability of IRFRU3504

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X